如何创建一个数据科学项目?

简介: 在一个新的数据科学项目,你应该如何组织你的项目流程?数据和代码要放在那里?应该使用什么工具?在对数据处理之前,需要考虑哪些方面?读完本文,会让你拥有一个更加科学的工作流程。

假如你想要开始一个新的数据科学项目,比如对数据集进行简单的分析,或者是一个复杂的项目。你应该如何组织你的项目流程?数据和代码要放在那里?应该使用什么工具?在对数据处理之前,需要考虑哪些方面?

数据科学是当前一个不太成熟的行业,每个人都各成一家。虽然我们可以在网上参照各种模板项目文章博客等创建一个数据科学项目,但是目前也没有教科书对这些知识做一个统一的回答。每个数据科学家都是从经验和错误中不断的探索和学习。现在,我逐渐了解到什么是典型的数据科学项目,应该如何构建项目?需要使用什么工具?在这篇文章中,我希望把我的经验分享给你。

工作流程

尽管数据科学项目的目标、规模及技术所涉及的范围很广,但其基本流程大致如下:

15439af863f44ea707173d3a2b3c67031e7f7aad

如上图所示,项目不同,其侧重点也会有所不同:有些项目的某个过程可能特别复杂,而另一些项目可能就不需要某一过程。举个例子来说,数据科学分析项目通常就不需要部署Deployment)和监控Monitoring)这两个过程。现在,我们逐一来细说各个过程。

源数据访问

不管是你接触到人类基因组还是iris.csv,通常都会有原始源数据这一概念。数据有很多种形式,可以是固定的,也可以是动态变化的,可以存储在本地或云端。其第一步都是对源数据访问,如下所示:

源数据是*.csv文件集合。使用Cookiecutter工具在项目的根文件夹中创建一个data/raw/子目录,并将所有的文件存储在这里;创建docs/data.rst文件描述源数据的含义。

源数据是*.csv文件集合。启动SQL服务器,创建一个raw表,将所有的CSV文件作为单独的表导入。创建docs/data.rst文件描述源数据及SQL Server位置。

源数据是基因组序列文件、患者记录、excelword文档组合等,后续还会以不可预测的方式增长。这样可以在云服务器中创建SQL数据库,将表导入。你可以在data/raw/目录存储特别大的基因组序列,在data/raw/unprocessed目录存储excelword文件;还可以使用DVC创建Amazon S3存储器,并将data/raw/目录推送过去;也可以创建一个Python包来访问外部网站;创建docs/data.rst目录,指定SQL服务器、S3存储器和外部网站。

源数据中包含不断更新的网站日志。可以使用ELK stack 并配置网站以流式传输新日志。

源数据包含10万张大小为128*128像素的彩色图像,所有图像的大小则为100,000*128*128*3,将其保存在HDF5文件images.h5中。创建一个Quilt数据包并将其推送给自己的私人Quilt存储库;创建/docs/data.rst文件,为了使用数据,必须首先使用quilt install mypkg/images导入工作区,然后再使用 from quilt.data.mypkg import images导入到代码中。

源数据是模拟数据集。将数据集生成实现为Python类,并在README.txt文件中记录其使用。

通常来说,在设置数据源的时候可以遵循以下规则:

存储数据的方式有意义,另外还要方便查询、索引。

保证数据易于共享,可以使用NFS分区、Amazon S3存储器、Git-LFS存储器、Quilt包等。

确保源数据是只读状态,且要备份副本。

花一定的时间,记录下所有数据的含义、位置及访问过程。

上面这个步骤很重要。后续项目会你可能会犯任何错误,比如源文件无效、误用方法等等,如果没有记住数据的含义、位置及访问过程,那将很麻烦。

数据处理

数据处理的目的是将数据转化为干净的数据,以便建模。在多数情况下,这种干净的形式就是一个特征表,因此,数据处理通常归结为各种形式的特征工程(feature engineering),其核心要求是:确保特征工程的逻辑可维护,目标数据集可重现,整个管道可以追溯到源数据表述。计算图(computation graph)即满足以上要求。具体例子如下:

根据cookiecutter-data-science规则,使用Makefile来描述计算图。通过脚本实现每个步骤,该脚本将一些数据文件作为输入,然后输出一个新的数据文件并存储在项目的data/interimdata/processed目录中。可以使用 make -j <njobs>命令进行并行运算。

使用DVC来描述和执行计算图,其过程与上面类似,此外还有共享生成文件等功能。

还可以使用LuigiAirflow或其他专用工作流管理系统来描述和执行计算图。除此之外,还可以在基于web的精美仪表板上查看计算进度。

所有源数据都以表的形式存储在SQL数据库中,在SQL视图中实现所有的特征提取逻辑。此外,还可以使用SQL视图来描述对象的样本。然后,你可以根据这些特征和样本视图创建最终的模型数据集。

首先,允许用户轻松的跟踪当前所定义的特征,而不用存储在大型数据表中。特征定义仅在代码运行期间有效;其次,模型从部署到生产非常简单,假设实时数据库使用相同的模式,你就只需要复制相应的视图。此外,还可以使用CTE语句将所有的特征定义编译为模型最终预测的单个查询语句。

bc3a1b541ba42f258786db816c85a4816caafef5

在进行数据处理时,请注意一下问题:

1.重复以计算图的形式处理数据。

2.考虑计算基础架构。是否进行长时间计算?是否需要并行计算还是聚类?是否可以从具有跟踪任务执行的管理UI作业中获益?

3.如果想要将模型部署到生产环境中,请确保系统支持该用例。如果正在开发一个包含JAVA Android应用程序模型,但是还是想用Python开发,为了避免不必要的麻烦,就可以使用一个专门设计的DSL,然后将这个DSL转换为JavaPMML之类的中间格式。

4.考虑存储特征或临时计算的元数据。可以将每个特征列保存在单独的文件中,或使用Python函数注释。

建模

完成数据处理和特征设计后即可开始进行建模。在一些数据科学项目中,建模可以归结为单个m.fitXy)或某个按钮;而在其他项目中则可能会涉及数周的迭代和实验。通常来说,你可以从特征工程建模开始,当模型的输出构成了很多特征时,数据处理和建模这两个过程并没有明确的界限,它们都涉及到计算。尽管如此,将建模单独列出来作为一个步骤,仍然很有意义,因为这往往会涉及到一个特殊的需求:实验管理(experiment management)。具体例子如下:

如果你正在训练一个模型,用于在iris.csv数据集中对Irises进行分类。你需要尝试十个左右的标准sklearn模型,每个模型都有多个不同的参数值,并且测试不同的特征子集。

如果你正在设计一个基于神经网络的图像分类模型。你可以使用ModelDB(或其他实验管理工具,如TensorBoardSacredFGLabHyperdashFloydHubComet.MLDatMoMLFlow...)来记录学习曲线和实验结果,以便选择最佳的模型。

使用Makefile(或DVC、工作流引擎)实现整个管道。模型训练只是计算图中的一个步骤,它输出model-<id>.pkl 文件,将模型最终AUC值附加到CSV文件,并创建 model-<id>.html报告,还有一堆用于评估的模型性能报告。

实验管理/模型版本控制的UI外观如下:

104f40d5bec6833d9e92333447fb8fc17a9c4410

模型部署

在实际应用中,模型最终都要部署到生产环境中,一定要有一个有效的计划,下面有些例子:

建模管道输出一个训练过模型的pickle文件。所有的数据访问和特征工程代码都是由一系列Python函数实现。你需要做的就是将模型部署到Python应用程序中,创建一个包含必要函数和模型pickle文件的Python包。

管建模道输出一个训练过的模型的pickle文件。部署模型需要使用Flask创建一个REST服务将其打包为一个docker容器,并通过公司的Kubernetes云服务器提供服务。

训练管道生成TensorFlow模型。可以将TensorFlow服务当做REST服务。每次更新模型时,都要创建测试并运行。

训练管道生成PMML文件。你可以用Java中的JPMML库来读取,一定要确保PMML导出器中要有模型测试。

训练管道将模型编译为SQL查询,将SQL查询编码到应用程序中。

我们对模型部署做一下总结:

1.模型部署的方式有很多种。在部署之前一定要了解实际情况,并提前做计划:是否需要将模型部署到其他语言编写的代码库中?如果使用REST服务,服务的负载时多少?能否进行批量预测?如果打算购买服务,费用是多少?如果决定使用PMML,那么就要确保它能够支持你的预期预处理逻辑。如果在训练期间使用第三方数据源,那么就要考虑是否在生产中能够与它们集成,以及如何在管道导出模型中对访问信息进行编码。

2.模型一旦部署到生产环境,它就转变为一行行实际的代码,所以也要满足所有需求,因此,这就需要测试。在理想情况下,部署管道应该产生用于部署的模型包以及测试时需要的所有内容。

模型监控

将模型成功部署到生产环境,也许训练集中的输入分布与现实不同,模型需要重新练或重新校准;也许系统性能没有达到预期。因此,你需要收集模型性能的数据并对其进行监控。这就需要你设置一个可视化仪表板,具体事例如下:

将模型的输入和输出保存在logstash或数据表中,设置Metabase(或TableauMyDBRGrafana等)并创建可视化模型性能和校准指标报告。

进一步探索和报告

在整个数据科学项目中,你还需要尝试不同的假设,以生成图标和报告。这些任务与构建管道有所不同,主要体现在两个方面:

首先,大部分任务不需要可再现性,即不用包含在计算图中。另外,也没必要使用模型的可重复性,在Jupyter中手动绘制图即可。

其次,这些进一步探索的问题往往具有不可预测性:可能需要分析性能监控日志中的一个异常值;或者测试一个新的算法。这些探索会塞满你的笔记本中,团队中的其他人可能看不懂你的记录。因此按照日期排列子项目很重要。

在项目中创建project目录,子文件夹命名格式为:projects/YYYY-MM-DD -项目名称。如下所示:

./2017-01-19 - Training prototype/
                (README, unsorted files)
./2017-01-25 - Planning slides/
                (README, slides, images, notebook)
./2017-02-03 - LTV estimates/
                 README
                 tasks/
                   (another set of
                    date-ordered subfolders)
./2017-02-10 - Cleanup script/
                 README
                 script.py
./... 50 folders more ...

注意,你可以根据需要自由组织每个子项目的内部目录,因为每个子项目很可能也是一个数据科学项目。在任何情况下,在每个子项目中都要有个README文件夹或README.txt文件,简要列出每个子项目目录的信息。

如果项目列表太长,你需要重新组织项目目录,比如压缩一部分文件移动到存档文件夹中。探索性的任务有两种形式,即一次性分析和可重复性使用的代码,这时候建立一些约定很有必要。

服务清单

数据科学项目可能会依赖一些服务,可以指定提供以下9个关键服务,来描述期望:

00cf0e1a787fc69e61a736a384d95217d44a0912

1.文件存储。任何一个数据科学项目都必须有个存储项目的地方,且需要整个团队共享。它是网络驱动器上的一个文件夹?还是Git存储库中的一个文件夹?

2.数据服务。如何存储和访问数据?这里的数据指的是计算机读取或输出的所有内容,包括源数据、中间结果及第三方数据集访问、元数据、模型及报告等。

3.版本。代码、数据、模型、报告和文档都需要有版本控制,另外一定要备份!

4.元数据和文档。如何记录项目及子项目?是否有任何机器都可读的特征、脚本、数据集或模型的元数据?

5.交互式计算。在交互式计算中,你选择JupyterLabRStudioROOTOctave还是Matlab?您是否为交互式并行计算设置了一个聚类(如ipyparalleldask)?

6.作业队列和调度程序。代码如何运行?是否需要安排定期维护?

7.计算图。如何描述计算图并建立可重复性?

8.实验管理。如何收集、查看和分析模型培训进度和结果?使用 ModelDBHyperdash还是 FloydHub

9.监控仪表板。如何收集和跟踪模型在生产环境中的具体表现?使用元数据库、Tableau PowerBI还是Grafana

最后,我总结了一个电子表格,包含了本文提到的所有工具,可自行下载使用。


本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。

文章原标题《the-data-science-workflow

译者:Mags,审校:袁虎。

文章为简译,更为详细的内容,请查看原文

相关文章
|
7月前
|
算法 数据挖掘 UED
BPPISE数据科学案例框架
BPPISE数据科学案例框架
|
7月前
|
数据采集 机器学习/深度学习 数据可视化
数据科学项目实战:完整的Python数据分析流程案例解析
【4月更文挑战第12天】本文以Python为例,展示了数据分析的完整流程:从CSV文件加载数据,执行预处理(处理缺失值和异常值),进行数据探索(可视化和统计分析),选择并训练线性回归模型,评估模型性能,以及结果解释与可视化。每个步骤都包含相关代码示例,强调了数据科学项目中理论与实践的结合。
701 2
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
62 2
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
完整的Python数据分析流程案例解析-数据科学项目实战
【7月更文挑战第5天】这是一个Python数据分析项目的概览,涵盖了从CSV数据加载到模型评估的步骤:获取数据、预处理(处理缺失值和异常值、转换数据)、数据探索(可视化和统计分析)、模型选择(线性回归)、训练与评估、优化,以及结果的可视化和解释。此流程展示了理论与实践的结合在解决实际问题中的应用。
118 1
|
7月前
|
分布式计算 数据挖掘 API
数据科学计算概述
MaxFrame是由阿里云自研的分布式科学计算框架
60 0
|
算法 数据挖掘 API
【数据科学基础】学习笔记
数据科学基础与数据挖掘
180 0
|
数据可视化
R数据科学|5.5.1 内容介绍
如果变动描述的是一个变量内部的行为,那么相关变动描述的就是多个变量之间的行为。相关变动是两个或多个变量以相关的方式共同变化所表现出的趋势。查看相关变动的最好 方式是将两个或多个变量间的关系以可视化的方式表现出来。如何进行这种可视化表示同 样取决于相关变量的类型。
206 0
R数据科学|5.5.1 内容介绍
|
数据可视化
R数据科学|5.5.3内容介绍
对于两个连续变量间的相关变动的可视化表示有一下两种方法: 1. 使用geom_point()画出散点图 2. 使用分箱处理
212 0
R数据科学|5.5.3内容介绍
R数据科学|第十章内容介绍(二)
本章通过学习字符串的处理,再结合正则表达式进行正确的模式匹配。
322 0
R数据科学|第十章内容介绍(二)
|
SQL
R数据科学|第九章内容介绍
在实际应用中,我们常会涉及到多个数据表,必须综合使用它们才能找到关键信息。存在于多个表中的这种数据统称为关系数据。本章中的很多概念都和SQL中的相似,只是在dplyr中的表达形式略微不同。一般来说,dplyr 要比 SQL 更容易使用
158 0
R数据科学|第九章内容介绍