我猜,每个程序员对着电梯都想过调度算法吧!

简介: 不管你是在北上广还是在港澳台,甚至三四线城市,凡是有规模的地区,高楼比比皆是。不管是写字楼,还是大型商城,让你最头痛的就是乘电梯,尤其是在赶时间的时候。

不管你是在北上广还是在港澳台,甚至三四线城市,凡是有规模的地区,高楼比比皆是。

不管是写字楼,还是大型商城,让你最头痛的就是乘电梯,尤其是在赶时间的时候。

img_b211e32e85186db250dd06159df54df4.jpe

每天早上,那些差5分钟就迟到的程序员,在等电梯时,一般会做两件事:

第一,在心里骂电梯慢;

第二,在心里暗算着电梯调度如何优化;

前者可能是写字楼里上班族惯有的精神类疾病,但后者肯定是程序员的职业病。

本文对“骂电梯”不给予任何指导性建议。

但说起电梯调度算法,我觉得还是可以给大家科普一下,好为大家在等电梯之余,打发时间而做出一点贡献。(电梯调度算法可以参考各种硬盘换道算法,下面内容整理自网络)

如果你依然在编程的世界里迷茫,不知道自己的未来规划,可以加入JAVA架构学习交流群:614478470 里面可以与大神一起交流并走出迷茫。进群免费领取学习资料,看看前辈们是如何在编程的世界里傲然前行!群里不停更新最新的教程和学习方法(进群送JAVA架构视频资料),有想学习JAVA的,或是转行,还有工作中想提升自己能力的,正在学习的小伙伴欢迎加入学习

1.1 先来先服务算法(FCFS)

先来先服务(FCFS-First Come First Serve)算法,是一种随即服务算法,它不仅仅没有对寻找楼层进行优化,也没有实时性的特征,它是一种最简单的电梯调度算法。

它根据乘客请求乘坐电梯的先后次序进行调度。此算法的优点是公平、简单,且每个乘客的请求都能依次地得到处理,不会出现某一乘客的请求长期得不到满足的情况。

这种方法在载荷较轻松的环境下,性能尚可接受,但是在载荷较大的情况下,这种算法的性能就会严重下降,甚至恶化。

人们之所以研究这种在载荷较大的情况下几乎不可用的算法,有两个原因:

任何调度算法在请求队列长度为1时,请求速率极低或相邻请求的间隔为无穷大时使用先来先服务算法既对调度效率不会产生影响,而且实现这种算法极其简单。

先来先服务算法可以作为衡量其他算法的标准。

1.2 最短寻找楼层时间优先算法(SSTF)

最短寻找楼层时间优先(SSTF-Shortest Seek Time First)算法,它注重电梯寻找楼层的优化。

最短寻找楼层时间优先算法选择下一个服务对象的原则是最短寻找楼层的时间。

这样请求队列中距当前能够最先到达的楼层的请求信号就是下一个服务对象。

在重载荷的情况下,最短寻找楼层时间优先算法的平均响应时间较短,但响应时间的方差较大,原因是队列中的某些请求可能长时间得不到响应,出现所谓的“饿死”现象。

1.3 扫描算法(SCAN)

扫描算法(SCAN) 是一种按照楼层顺序依次服务请求,它让电梯在最底层和最顶层之间连续往返运行,在运行过程中响应处在于电梯运行方向相同的各楼层上的请求。

它进行寻找楼层的优化,效率比较高,但它是一个非实时算法。扫描算法较好地解决了电梯移动的问题,在这个算法中,每个电梯响应乘客请求使乘客获得服务的次序是由其发出请求的乘客的位置与当前电梯位置之间的距离来决定的。

所有的与电梯运行方向相同的乘客的请求在一次电向上运行或向下运行的过程中完成,免去了电梯频繁的来回移动。

扫描算法的平均响应时间比最短寻找楼层时间优先算法长,但是响应时间方差比最短寻找楼层时间优先算法小,从统计学角度来讲,扫描算法要比最短寻找楼层时间优先算法稳定。

1.4 LOOK 算法

LOOK 算法是扫描算法(SCAN)的一种改进。对LOOK算法而言,电梯同样在最底层和最顶层之间运行。

但当 LOOK 算法发现电梯所移动的方向上不再有请求时立即改变运行方向,而扫描算法则需要移动到最底层或者最顶层时才改变运行方向。

1.5 SATF 算法

SATF(Shortest Access Time First)算法与 SSTF 算法的思想类似,唯一的区别就是 SATF 算法将 SSTF 算法中的寻找楼层时间改成了访问时间。

这是因为电梯技术发展到今天,寻找楼层的时间已经有了很大地改进,但是电梯的运行当中等待乘客上梯时间却不是人为可以控制。

SATF 算法考虑到了电梯运行过程中乘客上梯时间的影响。

2.1 最早截止期优先调度算法

最早截止期优先(EDF-Earliest Deadline First)调度算法是最简单的实时电梯调度算法,它的缺点就是造成电梯任意地寻找楼层,导致极低的电梯吞吐率。

它与 FCFS 调度算法类似,EDF 算法是电梯实时调度算法中最简单的调度算法。

它响应请求队列中时限最早的请求,是其它实时电梯调度算法性能衡量的基准和特例。

2.2 SCAN-EDF 算法

SCAN-EDF 算法是 SCAN 算法和 EDF 算法相结合的产物。SCAN-EDF 算法先按照 EDF 算法选择请求列队中哪一个是下一个服务对象,而对于具有相同时限的请求,则按照 SCAN 算法服务每一个请求。它的效率取决于有相同 deadline  的数目,因而效率是有限的。

2.3 PI 算法

PI(Priority Inversion)算法将请求队列中的请求分成两个优先级,它首先保证高优先级队列中的请求得到及时响应,再搞优先级队列为空的情况下在相应地优先级队列中的请求。

2.4 FD-SCAN 算法

FD-SCAN(Feasible Deadline SCAN)算法首先从请求队列中找出时限最早、从当前位置开始移动又可以买足其时限要求的请求,作为下一次 SCAN 的方向。

并在电梯所在楼层向该请求信号运行的过程中响应处在与电梯运行方向相同且电梯可以经过的请求信号。

这种算法忽略了用 SCAN 算法相应其它请求的开销,因此并不能确保服务对象时限最终得到满足。

算法基础阅读:8 种排序算法:从原理到改进,再到代码兑现透彻解析

以上两结介绍了几种简单的电梯调度算法。

但是并不是说目前电梯调度只发展到这个层次。目前电梯的控制技术已经进入了电梯群控的时代。

随着微机在电梯系统中的应用和人工智能技术的发展,智能群控技术得以迅速发展起来。

由此,电梯的群控方面陆续发展出了一批新方法,包括:基于专家系统的电梯群控方法、基于模糊逻辑的电梯群控方法、基于遗产算法的电梯群控方法、基于胜景网络的电梯群控方法和基于模糊神经网络的电梯群控方法。

4.1 电梯的初始状态

本人设置的电梯的初始状态,是对住宅楼的电梯的设置。

(1)建筑共有21层,其中含有地下一层(地下一层为停车场)。

(2)建筑内部设有两部电梯,编号分别为A梯、B梯。

(3)电梯内部有23个按钮,其中包括开门按钮、关门按钮和楼层按钮,编号为-1,1,2,3,4……20。

(4)电梯外部含有两个按钮,即向上运行按钮和向下运行按钮。建筑顶层与地下一层例外,建筑顶层只设置有向下运行按钮,地下一层只设置有向上运行按钮。

(5)电梯开关门完成时间设定为1秒。电梯到达每层后上下人的时间设定为8秒。电梯从静止开始运行到下一层的时间设置为2秒,而运行中通过一层的时间为1秒。

(6)在凌晨2:00——4:30之间,如若没有请求信号,A梯自动停在14层,B梯自动停在6层。

(7)当电梯下到-1层后,如果没有请求信号,电梯自动回到1层。

4.2 电梯基本功能

每一架电梯都有一个编号,以方便监控与维修。每一架电梯都有一实时监控器,负责监控电梯上下,向电梯升降盒发送启动、制动、加速、减速、开关电梯门的信号。若电梯发生故障,还应向相应的电梯负责人发送求救信号。

4.3 电梯按钮功能

电梯内部的楼层按钮:电梯内部对应每一个楼层的按钮成为楼层按钮,即本章第一结提到的编号为 -1,1,2,3,4……20的按钮。当乘客进入电梯后按下楼层按钮,此按钮显示灰色,代表不可以用。

这样就表示乘客将要去往此层,电梯将开往相应层。当电梯到达该层后,按钮恢复可以使用状态。

电梯内部开门按钮:当电梯达到乘客想要去往的某楼层后,乘客需要准备离开电梯,当电梯停稳后,乘客可以按下开门按钮,电梯门将打开,让用户离开。

如若电梯到了乘客曾经按下的楼层,但是无乘客按开门按钮,电梯将自动在停稳后1秒后自动开门。

电梯内部关门按钮:当所有想要乘坐电梯的乘客都进入电梯以后,准备让电梯开始运行的时候,乘客需要按下关门按钮,让电梯门关闭,使电梯进入运行状态。设置电梯的自动关门时间为8秒。

电梯外部向上按钮:此按钮表示上楼请求,当按下此按钮时,如果电梯到达按下此按钮的楼层,且电梯运行方向是向上的,那么电梯响将停下,并在电梯停稳之后自动开门,此请求被响应后,取消此请求信号。

电梯外部向下按钮:此按钮表示下楼请求,当按下此按钮时,如果电梯到达按下此按钮的楼层,且电梯运行方向是向下的,那么电梯响将停下,并在电梯停稳之后自动开门,此请求被响应后,取消此请求信号。

想要学习Java高架构、分布式架构、高可扩展、高性能、高并发、性能优化、Spring boot、Redis、ActiveMQ、Nginx、Mycat、Netty、Jvm大型分布式项目实战学习架构师视频免费获取 架构群:614478470

点击链接加入群聊【JAVA高级架构】:https://jq.qq.com/?_wv=1027&k=5gMDouY

结束语

你肯能意识到哪个算法都不是一个最佳方案,只是它确实解决了一定情况的问题。

但是对一个优秀的程序员而言,研究各种算法是无比快乐的。也许你下一次面试,就有关于调度算法的问题。

相关文章
|
8天前
|
算法 人机交互 调度
进程调度算法_轮转调度算法_优先级调度算法_多级反馈队列调度算法
轮转调度算法(RR)是一种常用且简单的调度方法,通过给每个进程分配一小段CPU运行时间来轮流执行。进程切换发生在当前进程完成或时间片用尽时。优先级调度算法则根据进程的紧迫性赋予不同优先级,高优先级进程优先执行,并分为抢占式和非抢占式。多队列调度算法通过设置多个具有不同优先级的就绪队列,采用多级反馈队列优先调度机制,以满足不同类型用户的需求,从而优化整体调度性能。
28 15
|
8天前
|
算法 调度
作业调度算法_先来先服务算法_短作业优先算法_高响应比优先算法
本文介绍了作业调度算法,包括先来先服务(FCFS)、短进程优先(SJF)和高响应比优先(HRRN)算法。通过分析进程的到达时间和所需CPU服务时间,计算进程的开始时间、完成时间、平均周转时间和平均带权周转时间,以评估不同算法的性能。FCFS适合长作业,SJF适合短作业,而HRRN则综合了两者的优点。
34 12
|
10天前
|
算法 调度 UED
深入理解操作系统之进程调度算法
【9月更文挑战第9天】在操作系统的心脏跳动中,进程调度扮演着关键角色,就如同指挥家控制交响乐的节奏。本文将通过浅显易懂的语言和生动的比喻,带领读者走进进程调度的世界,探索不同调度算法背后的哲学与实践,以及它们如何影响系统的性能和用户体验。从最简单的先来先服务到复杂的多级队列和反馈循环,我们将一同见证操作系统如何在众多任务中做出选择,确保系统的高效与公平。
|
3天前
|
算法 Linux 调度
探索现代操作系统的心脏:调度算法的演变与挑战
本文旨在深入探讨现代操作系统中至关重要的组成部分——进程调度算法。通过回顾其发展历程,分析当前主流技术,并展望未来趋势,揭示调度算法如何影响系统性能和用户体验。不同于常规摘要,本文将注重于技术的深度解析和背后的设计哲学,为专业开发者提供全面的视角。
13 0
|
3天前
|
人工智能 算法 物联网
探究操作系统的心脏:调度算法的进化与影响
本文深入探讨了操作系统中核心组件—调度算法的发展历程,重点分析了先来先服务、短作业优先、时间片轮转、优先级调度及多级反馈队列等经典调度算法。通过对比各算法的性能特点,如公平性、响应速度和系统吞吐量,阐述了它们在不同应用场景下的适用性和局限性。同时,文章展望了未来调度算法可能的改进方向,包括人工智能驱动的自学习调度策略、云计算环境下的分布式调度优化,以及物联网设备资源限制下的轻量级调度方案。此外,还强调了实时系统对高可靠性和严格时序保证的需求,以及在多核处理器普及背景下,线程级并行化对调度机制提出的新挑战。本文旨在为操作系统设计者、性能优化工程师及计算机科学领域的研究者和学生提供一个全面而深入的
13 0
|
28天前
|
算法 搜索推荐 程序员
程序员常用算法详细讲解
每一种算法都有其适用场景,了解并熟悉这些常用算法的策略和实现,对于解决实际编程问题具有重要的意义。需要注意的是,理论知识的重要性虽然不言而喻,但真正的理解和掌握,还需要在实践中不断地尝试和错误,以达到深入理解的目的。
11 1
|
29天前
|
DataWorks 算法 调度
B端算法实践问题之配置脚本以支持blink批处理作业的调度如何解决
B端算法实践问题之配置脚本以支持blink批处理作业的调度如何解决
26 1
|
20天前
|
存储 算法 调度
深入理解操作系统:进程调度的算法与实现
【8月更文挑战第31天】在操作系统的核心,进程调度扮演着关键角色,它决定了哪个进程将获得CPU的使用权。本文不仅剖析了进程调度的重要性和基本概念,还通过实际代码示例,展示了如何实现一个简单的调度算法。我们将从理论到实践,一步步构建起对进程调度的理解,让读者能够把握操作系统中这一复杂而精妙的部分。
|
20天前
|
算法 调度 开发者
深入理解操作系统:进程管理与调度算法
在数字时代的心脏,操作系统扮演着至关重要的角色。它不仅是计算机硬件与软件之间的桥梁,更是确保多任务高效运行的守护者。本文将带你一探操作系统中进程管理的奥秘,并通过实际代码示例深入解析进程调度算法。无论你是编程新手还是资深开发者,了解这些基础概念都将有助于你更好地理解计算机工作原理,并提升你对系统性能调优的认识。准备好,让我们一起揭开操作系统的神秘面纱!【8月更文挑战第31天】
|
20天前
|
算法 调度
探索操作系统的心脏:进程调度算法揭秘
【8月更文挑战第31天】本文将带领读者深入理解操作系统中至关重要的一环——进程调度。通过浅显易懂的语言和逐步深入的内容安排,我们将从基础概念入手,探讨进程调度的目的和挑战,进而分析几种常见的调度算法。文中不仅提供了丰富的代码示例,还设计了互动问题,鼓励读者思考并应用所学知识。让我们一起揭开操作系统进程调度的神秘面纱,看看它是如何在幕后支撑着我们日常使用的电脑和移动设备的顺畅运行。