这篇文章是我之前翻阅了不少的书籍以及从网络上收集的一些资料的整理,因此不免有一些不准确的地方,同时不同JDK版本的差异也比较大。
5.垃圾回收
5.1 按代实现垃圾回收
新生代(Young generation):
绝大多数最新被创建的对象会被分配到这里,由于大部分对象在创建后会很快变得不可到达,所以很多对象被创建在新生代,然后消失。对象从这个区域消失的过程我们称之为”minor GC“。
新生代中存在一个Eden区和两个Survivor区。新对象会首先分配在 Eden 中(如果新对象过大,会直接分配在老年代中)。在GC中,Eden 中的对象会被移动到survivor中,直至对象满足一定的年纪(定义为熬过GC的次数),会被移动到老年代(具体细节将在下边垃圾收集算法中讨论)。
可以设置新生代和老年代的相对大小。这种方式的优点是新生代大小会随着整个堆大小动态扩展。参数 -XX:NewRatio 设置老年代与新生代的比例。例如 -XX:NewRatio=8 指定老年代/新生代为8/1. 老年代占堆大小的 7/8 ,新生代占 1/8 .(默认即使1/8)
例如:-XX:NewSize=64m -XX:MaxNewSize=1024m -XX:NewRatio=8
老年代(Old generation):
对象没有变得不可达,并且从新生代中存活下来,会被拷贝到这里。其所占用的空间要比新生代多。也正由于其相对较大的空间,发生在老年代上的GC要比新生代少得多。对象从老年代中消失的过程,可以称之为”major GC“(或者”full GC“)
永久代(permanent generation):
像一些类的层级信息,方法数据和方法信息(如字节码,栈和变量大小),运行时常量池(jdk7之后移出永久代),已确定的符号引用和虚方法表等等,它们几乎都是静态的并且很少被卸载和回收,在JDK8之前的HotSpot虚拟机中,类的这些“永久的”数据存放在一个叫做永久代的区域。永久代一段连续的内存空间,我们在JVM启动之前可以通过设置-XX:MaxPermSize的值来控制永久代的大小。但是jdk8之后取消了永久代,这些元数据被移到了一个与堆不相连的本地内存区域 。
5.2 怎样判断对象是否已经死亡
引用计数收集算法
用计数是垃圾收集器中的早期策略。在这种方法中,堆中每个对象(不是引用)都有一个引用计数。当一个对象被创建时,且将该对象分配给一个变量,该变量计数设置为1。当任何其它变量被赋值为这个对象的引用时,计数加1(a = b,则b引用的对象+1),但当一个对象的某个引用超过了生命周期或者被设置为一个新值时,对象的引用计数减1。任何引用计数为0的对象可以被当作垃圾收集。当一个对象被垃圾收集时,它引用的任何对象计数减1。
- 优点:引用计数收集器可以很快的执行,交织在程序运行中。对程序不被长时间打断的实时环境比较有利。
- 缺点: 无法检测出循环引用。如父对象有一个对子对象的引用,子对象反过来引用父对象。这样,他们的引用计数永远不可能为0.
可达性分析算法
通过一系列称为”GC Roots”的对象作为起点,从这些节点开始向下搜索,搜索所有走过的路径称为引用链,当一个对象到GC Roots没有任何引用链相连时(从GC Roots到此对象不可达),则证明此对象是不可用的。
可作为GC Roots的对象包括:
- 虚拟机栈中所引用的对象(本地变量表)
- 方法区中类静态属性引用的对象
- 方法区中常量引用的对象
- 本地方法栈中JNI引用的对象(Native对象)
5.3 java中的引用
强引用(Strong Reference):
在代码中普遍存在的,类似”Object obj = new Object”这类引用,只要强引用还在,垃圾收集器永远不会回收掉被引用的对象
软引用(Sofe Reference):
有用但并非必须的对象,可用SoftReference类来实现软引用,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围之中进行二次回收。如果这次回收还没有足够的内存,才会抛出内存异常异常。
弱引用(Weak Reference):
被弱引用关联的对象只能生存到下一次垃圾收集发生之前,JDK提供了WeakReference类来实现弱引用。
虚引用(Phantom Reference):
也称为幽灵引用或幻影引用,是最弱的一种引用关系,JDK提供了PhantomReference类来实现虚引用。
5.4 finalize方法什么作用
对于一个对象来说,在被判断没有 GCroots 与其相关联时,被第一次标记,然后判断该对象是否应该执行finalize方法(判断依据:如果对象的finalize方法被复写,并且没有执行过,则可以被执行)。如果允许执行那么这个对象将会被放到一个叫F-Query的队列中,等待被执行。(注意:由于finalize的优先级比较低,所以该对象的的finalize方法不一定被执行,即使被执行了,也不保证finalize方法一定会执行完)
5.5 垃圾收集算法
标记-清除算法:
标记-清除算法采用从根集合进行扫描,对存活的对象进行标记,标记完毕后,再扫描整个空间中未被标记的对象,进行回收。标记-清除算法不需要进行对象的移动,并且仅对不存活的对象进行处理,在存活对象比较多的情况下极为高效,但由于标记-清除算法直接回收不存活的对象,因此会造成内存碎片。
复制算法:
这种收集算法将堆栈分为两个域,常称为半空间。每次仅使用一半的空间,JVM生成的新对象则放在另一半空间中。GC运行时,它把可到达对象复制到另一半空间,从而压缩了堆栈。这种方法适用于短生存期的对象,持续复制长生存期的对象则导致效率降低。并且对于指定大小堆来说,需要两倍大小的内存,因为任何时候都只使用其中的一半。
标记整理算法:
标记-整理算法采用标记-清除算法一样的方式进行对象的标记,但在清除时不同,在回收不存活的对象占用的空间后,会将所有的存活对象往一端空闲空间移动,并更新对应的指针。标记-整理算法是在标记-清除算法的基础上,又进行了对象的移动,因此成本更高,但是却解决了内存碎片的问题。
分代收集算法:
在上边三种收集思想中加入了分代的思想。
5.6 Hotspot实现垃圾回收细节
一致性:
在可达性分析期间整个系统看起来就像被冻结在某个时间点上,不可以出现分析过程中对象引用关系还在不断变化的情况。
一致性要求导致GC进行时必须停顿所有Java执行线程。(Stop The World)即使在号称不会发生停顿的CMS收集器中,枚举根节点时也是必须停顿的。
HotSpot使用的是准确式GC,当执行系统停顿下来后,并不需要一个不漏地检查完所有执行上下文和全局的引用位置,这是通过一组称为OopMap的数据结构来达到的。
安全点(Safe Point):
程序只有在到达安全点时才能暂停。安全点的选定标准是“是否具有让程序长时间执行的特征”。“长时间执行”的最明显特征就是指令序列的复用,如方法调用、循环跳转等,具有这些功能的指令才会产生安全点。
让程序暂停的两种方式:
* 抢先式中断(Preemptive Suspension):在GC发生时,主动中断所有线程,不需要线程执行的代码主动配合。如果发现有线程中断的地方不在安全点上,就恢复线程让它跑到安全点上。(不推荐)
* 主动式中断(Voluntary Suspension):设一个标志,各个线程主动去轮询这个标志,遇到中断则暂停。轮询地方与安全点重合。
5.7 垃圾收集器
HotSpot中几种常见的垃圾收集器:
5.7.1 Serial收集器
Serial收集器是最基本、发展历史最悠久的收集器,曾经(在JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。
特性:
这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。Stop The World
应用场景:
Serial收集器是虚拟机运行在Client模式下的默认新生代收集器。
优势:
简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。
5.7.2 ParNew收集器
特性:
ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样,在实现上,这两种收集器也共用了相当多的代码。
应用场景:
ParNew收集器是许多运行在Server模式下的虚拟机中首选的新生代收集器。有一个很重要的原因是除了Serial收集器外,目前只有它能与CMS收集器配合工作。
Serial收集器 VS ParNew收集器:
ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越Serial收集器。然而,随着可以使用的CPU的数量的增加,它对于GC时系统资源的有效利用还是很有好处的。
5.7.3 Parallel Scavenge收集器
特性:
Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器。
应用场景:
停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。
对比分析:
Parallel Scavenge收集器 VS CMS等收集器:
Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关 注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。
由于与吞吐量关系密切,Parallel Scavenge收集器也经常称为“吞吐量优先”收集器。
Parallel Scavenge收集器 VS ParNew收集器:
Parallel Scavenge收集器与ParNew收集器的一个重要区别是它具有自适应调节策略。
GC自适应的调节策略:
Parallel Scavenge收集器有一个参数-XX:+UseAdaptiveSizePolicy。当这个参数打开之后,就不需要手工指定新生代的大小、Eden与Survivor区的比例、晋升老年代对象年龄等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略(GC Ergonomics)。
5.7.4 Serial Old收集器
特性:
Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。
应用场景:
- Client模式:Serial Old收集器的主要意义也是在于给Client模式下的虚拟机使用。
- Server模式:如果在Server模式下,那么它主要还有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge收集器搭配使用,另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。
5.7.5 Parallel Old收集器
特性:
Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。
应用场景:
在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。
这个收集器是在JDK 1.6中才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。原因是,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old收集器外别无选择(Parallel Scavenge收集器无法与CMS收集器配合工作)。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用了Parallel Scavenge收集器也未必能在整体应用上获得吞吐量最大化的效果,由于单线程的老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有ParNew加CMS的组合“给力”。直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的应用组合。
5.7.6 CMS收集器
特性:
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。
CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤:
- 初始标记(CMS initial mark):初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,需要“Stop The World”。
- 并发标记(CMS concurrent mark):并发标记阶段就是进行GC Roots Tracing的过程。
- 重新标记(CMS remark):重新标记阶段是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短,仍然需要“Stop The World”。
- 并发清除(CMS concurrent sweep):并发清除阶段会清除对象。
由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。
优点:
CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集、低停顿。
缺点:
-
1)CMS收集器对CPU资源非常敏感
其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。
CMS默认启动的回收线程数是(CPU数量+3)/ 4,也就是当CPU在4个以上时,并发回收时垃圾收集线程不少于25%的CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个(譬如2个)时,CMS对用户程序的影响就可能变得很大。
-
2)CMS收集器无法处理浮动垃圾
CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。
由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。
也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。
-
3)CMS收集器会产生大量空间碎片
CMS是一款基于“标记—清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。
5.7.7 G1收集器
特性:
G1(Garbage-First)是一款面向服务端应用的垃圾收集器。HotSpot开发团队赋予它的使命是未来可以替换掉JDK 1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点。
-
1)并行与并发
G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。
-
2)分代收集
与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。
-
3)空间整合
与CMS的“标记—清理”算法不同,G1从整体来看是基于“标记—整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。
-
4)可预测的停顿
这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒。
在G1之前的其他收集器进行收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。
G1收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region(这也就是Garbage-First名称的来由)。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限的时间内可以获取尽可能高的收集效率。
执行过程:
G1收集器的运作大致可划分为以下几个步骤:
- 1)初始标记(Initial Marking):初始标记阶段仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS(Next Top at Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可用的Region中创建新对象,这阶段需要停顿线程,但耗时很短。
- 2)并发标记(Concurrent Marking):并发标记阶段是从GC Root开始对堆中对象进行可达性分析,找出存活的对象,这阶段耗时较长,但可与用户程序并发执行。
- 3)最终标记(Final Marking):最终标记阶段是为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程Remembered Set Logs里面,最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但是可并行执行。
- 4)筛选回收(Live Data Counting and Evacuation):筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划,这个阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分Region,时间是用户可控制的,而且停顿用户线程将大幅提高收集效率。
何时会抛出OutOfMemoryException,并不是内存被耗空的时候才抛出
* JVM98%的时间都花费在内存回收
* 每次回收的内存小于2%
个人介绍:
高广超 :多年一线互联网研发与架构设计经验,擅长设计与落地高可用、高性能互联网架构。
本文首发在 高广超的简书博客 转载请注明!