JSON数据从MongoDB迁移到MaxCompute最佳实践

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 本文为您介绍如何利用DataWorks数据集成直接从MongoDB提取JSON字段到MaxCompute。

数据及账号准备

首先您需要将数据上传至您的MongoDB数据库。本例中使用阿里云的 云数据库 MongoDB 版,网络类型为VPC(需申请公网地址,否则无法与DataWorks默认资源组互通),测试数据如下。

{
    "store": {
        "book": [
             {
                "category": "reference",
                "author": "Nigel Rees",
                "title": "Sayings of the Century",
                "price": 8.95
             },
             {
                "category": "fiction",
                "author": "Evelyn Waugh",
                "title": "Sword of Honour",
                "price": 12.99
             },
             {
                 "category": "fiction",
                 "author": "J. R. R. Tolkien",
                 "title": "The Lord of the Rings",
                 "isbn": "0-395-19395-8",
                 "price": 22.99
             }
          ],
          "bicycle": {
              "color": "red",
              "price": 19.95
          }
    },
    "expensive": 10
}
登录MongoDB的DMS控制台,本例中使用的数据库为  admin,集合为  userlog,您可以在查询窗口使用 db.userlog.find().limit(10)命令查看已上传好的数据,如下图所示。 
 
此外,需提前在数据库内新建用户,用于DataWorks添加数据源。本例中使用命令 db.createUser({user:"bookuser",pwd:"123456",roles:["root"]}),新建用户名为  bookuser,密码为  123456,权限为 root

使用DataWorks提取数据到MaxCompute

  1. 新增MongoDB数据源
    进入DataWorks 数据集成控制台,新增 MongoDB类型数据源。 

    具体参数如下所示,测试数据源连通性通过即可点击完成。由于本文中MongoDB处于VPC环境下,因此  数据源类型需选择  有公网IP。 

    访问地址及端口号可通过在 MongoDB管理控制台点击实例名称获取,如下图所示。 

  2. 新建数据同步任务
    在DataWorks上新建 数据同步类型节点。 

    新建的同时,在DataWorks新建一个 建表任务,用于存放JSON数据,本例中新建表名为mqdata。 

    表参数可以通过图形化界面完成。本例中mqdata表仅有一列,类型为string,列名为MQ data。 

    完成上述新建后,您可以在图形化界面进行数据同步任务参数的初步配置,如下图所示。选择目标数据源名称为odps_first,选择目标表为刚建立的mqdata。数据来源类型为MongoDB,选择我们刚创建的数据源mongodb_userlog。完成上述配置后,  点击转换为脚本,跳转到脚本模式。 

    脚本模式代码示例如下。
    
    {
        "type": "job",
        "steps": [
            {
                "stepType": "mongodb",
                "parameter": {
                    "datasource": "mongodb_userlog",
     //数据源名称
                    "column": [
                        {
                            "name": "store.bicycle.color", //JSON字段路径,本例中提取color值
                            "type": "document.document.string" //本栏目的字段数需和name一致。假如您选取的JSON字段为一级字段,如本例中的expensive,则直接填写string即可。
                        }
                    ],
                    "collectionName //集合名称": "userlog"
                },
                "name": "Reader",
                "category": "reader"
            },
            {
                "stepType": "odps",
                "parameter": {
                    "partition": "",
                    "isCompress": false,
                    "truncate": true,
                    "datasource": "odps_first",
                    "column": [
         //MaxCompute表列名                 "mqdata"
                    ],
                    "emptyAsNull": false,
                    "table": "mqdata"
                },
                "name": "Writer",
                "category": "writer"
            }
        ],
        "version": "2.0",
        "order": {
            "hops": [
                {
                    "from": "Reader",
                    "to": "Writer"
                }
            ]
        },
        "setting": {
            "errorLimit": {
                "record": ""
            },
            "speed": {
                "concurrent": 2,
                "throttle": false,
                "dmu": 1
            }
        }
    }
    完成上述配置后,点击运行接即可。运行成功日志示例如下所示。 

结果验证

在您的 业务流程中新建一个ODPS SQL节点。 
 
您可以输入  SELECT * from mqdata;语句,查看当前mqdata表中数据。当然这一步您也可以直接在 MaxCompute客户端中输入命令运行。 
 
相关实践学习
基于Hologres轻量实时的高性能OLAP分析
本教程基于GitHub Archive公开数据集,通过DataWorks将GitHub中的项⽬、行为等20多种事件类型数据实时采集至Hologres进行分析,同时使用DataV内置模板,快速搭建实时可视化数据大屏,从开发者、项⽬、编程语⾔等多个维度了解GitHub实时数据变化情况。
目录
相关文章
|
3月前
|
JSON 安全 API
Python处理JSON数据的最佳实践:从基础到进阶的实用指南
JSON作为数据交换通用格式,广泛应用于Web开发与API交互。本文详解Python处理JSON的10个关键实践,涵盖序列化、复杂结构处理、性能优化与安全编程,助开发者高效应对各类JSON数据挑战。
245 1
|
9月前
|
存储 NoSQL MongoDB
数据库数据恢复—MongoDB数据库迁移过程中丢失文件的数据恢复案例
某单位一台MongoDB数据库由于业务需求进行了数据迁移,数据库迁移后提示:“Windows无法启动MongoDB服务(位于 本地计算机 上)错误1067:进程意外终止。”
|
9月前
|
存储 NoSQL 安全
客户说|知乎核心业务MongoDB集群的平滑上云迁移实践
客户说|知乎核心业务MongoDB集群的平滑上云迁移实践
301 0
|
12月前
|
消息中间件 JSON NoSQL
从 ES Kafka Mongodb Restful ... 取到 json 之后
JSON 是一种广泛使用的数据交换格式,但其计算和处理能力有限。esProc SPL 是一款强大的开源计算引擎,能够高效解析 JSON 数据,并支持复杂的过滤、分组、连接等操作。它不仅兼容多种数据源,如 RESTful、ElasticSearch、MongoDB 和 Kafka,还提供了游标对象处理大数据流,支持与 Java 应用无缝集成,实现灵活的业务逻辑处理。
|
NoSQL MongoDB 数据库
使用NimoShake将数据从AWS DynamoDB迁移至阿里云MongoDB
使用NimoShake将数据从AWS DynamoDB迁移至阿里云MongoDB
|
C# UED 开发者
WPF与性能优化:掌握这些核心技巧,让你的应用从卡顿到丝滑,彻底告别延迟,实现响应速度质的飞跃——从布局到动画全面剖析与实例演示
【8月更文挑战第31天】本文通过对比优化前后的方法,详细探讨了提升WPF应用响应速度的策略。文章首先分析了常见的性能瓶颈,如复杂的XAML布局、耗时的事件处理、不当的数据绑定及繁重的动画效果。接着,通过具体示例展示了如何简化XAML结构、使用后台线程处理事件、调整数据绑定设置以及利用DirectX优化动画,从而有效提升应用性能。通过这些优化措施,WPF应用将更加流畅,用户体验也将得到显著改善。
1276 1
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
253 0
|
监控 NoSQL 大数据
【MongoDB复制集瓶颈】高频大数据写入引发的灾难,如何破局?
【8月更文挑战第24天】在MongoDB复制集中,主节点处理所有写请求,从节点通过复制保持数据一致性。但在大量高频数据插入场景中,会出现数据延迟增加、系统资源过度消耗、复制队列积压及从节点性能不足等问题,影响集群性能与稳定性。本文分析这些问题,并提出包括优化写入操作、调整写入关注级别、采用分片技术、提升从节点性能以及持续监控调优在内的解决方案,以确保MongoDB复制集高效稳定运行。
430 2
|
存储 NoSQL JavaScript
MongoDB存储过程实战:聚合框架、脚本、最佳实践,一文全掌握!
【8月更文挑战第24天】MongoDB是一款备受欢迎的文档型NoSQL数据库,以灵活的数据模型和强大功能著称。尽管其存储过程支持不如传统关系型数据库,本文深入探讨了MongoDB在此方面的最佳实践。包括利用聚合框架处理复杂业务逻辑、封装业务逻辑提高复用性、运用JavaScript脚本实现类似存储过程的功能以及考虑集成其他工具提升数据处理能力。通过示例代码展示如何创建订单处理集合并定义验证规则,虽未直接实现存储过程,但有效地演示了如何借助JavaScript脚本处理业务逻辑,为开发者提供更多实用指导。
256 2

相关产品

  • 云原生大数据计算服务 MaxCompute
  • 推荐镜像

    更多