MySQL创建索引

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介:

MySQL创建索引

如果你在查询时常用类似以下的语句:
SELECT * FROM mytable WHERE category_id=1;

最直接的应对之道,是为category_id建立一个简单的索引:

CREATE INDEX mytable_categoryid  ON mytable (category_id);

OK,搞定?先别高兴,如果你有不止一个 选择 条件呢?例如:

SELECT * FROM mytable WHERE category_id=1 AND user_id=2;

你的第一反应可能是,再给user_id建立一个索引。不好,这不是一个最佳的方法。你可以建立多重的索引。

CREATE INDEX mytable_categoryid_userid ON mytable (category_id,user_id);

注意到我在命名时的习惯了吗?我使用"表名_字段1名_字段2名"的方式。你很快就会知道我为什么这样做了。

现在你已经为适当的字段建立了索引,不过,还是有点不放心吧,你可能会问,数据库会真正用到这些索引吗?测试一下就OK,对于大多数的数据库来说,这是很容易的,只要使用EXPLAIN命令:

	EXPLAIN

 	SELECT * FROM mytable  WHERE category_id=1 AND user_id=2;

	This is what Postgres 7.1 returns (exactly as I expected) 

 NOTICE: QUERY PLAN:

	Index Scan using mytable_categoryid_userid on 
  	mytable (cost=0.00..2.02 rows=1 width=16)

	EXPLAIN



 以上是postgres的数据,可以看到该数据库在查询的时候使用了一个索引(一个好开始),而且它使用的是我创建的第二个索引。看到我上面命名的好处了吧,你马上知道它使用适当的索引了。

接着,来个稍微复杂一点的,如果有个ORDER BY字句呢?不管你信不信,大多数的数据库在使用order by的时候,都将会从索引中受益。
SELECT * FROM mytable   WHERE category_id=1 AND user_id=2    ORDER BY adddate DESC;

 有点迷惑了吧?很简单,就象为where字句中的字段建立一个索引一样,也为ORDER BY的字句中的字段建立一个索引:

CREATE INDEX mytable_categoryid_userid_adddate  ON mytable (category_id,user_id,adddate);

  注意: "mytable_categoryid_userid_adddate" 将会被截短为

"mytable_categoryid_userid_addda"

CREATE

  EXPLAIN SELECT * FROM mytable 
  WHERE category_id=1 AND user_id=2
   ORDER BY adddate DESC;

 NOTICE: QUERY PLAN:

 Sort (cost=2.03..2.03 rows=1 width=16)
  -> Index Scan using mytable_categoryid_userid_addda 
    on mytable (cost=0.00..2.02 rows=1 width=16)

EXPLAIN



  看看EXPLAIN的输出,好象有点恐怖啊,数据库多做了一个我们没有要求的排序,这下知道性能如何受损了吧,看来我们对于数据库的自身运作是有点过于乐观了,那么,给数据库多一点提示吧。

  为了跳过排序这一步,我们并不需要其它另外的索引,只要将查询语句稍微改一下。这里用的是postgres,我们将给该数据库一个额外的提示--在ORDER BY语句中, 加入 where语句中的字段。这只是一个技术上的处理,并不是必须的,因为实际上在另外两个字段上,并不会有任何的排序操作,不过如果加入,postgres将会知道哪些是它应该做的。

EXPLAIN SELECT * FROM mytable 
  WHERE category_id=1 AND user_id=2
  ORDER BY category_id DESC,user_id DESC,adddate DESC;

NOTICE: QUERY PLAN:

Index Scan Backward using 
 mytable_categoryid_userid_addda on mytable 
   (cost=0.00..2.02 rows=1 width=16)

EXPLAIN



  现在使用我们料想的索引了,而且它还挺 聪明 ,知道可以从索引后面开始读,从而避免了任何的排序。

  以上说得细了一点,不过如果你的数据库非常巨大,并且每日的页面请求达上百万算,我想你会获益良多的。不过,如果你要做更为复杂的查询呢,例如将多张表结合起来查询,特别是where限制字句中的字段是来自不止一个表格时,应该怎样处理呢?我通常都尽量避免这种做法,因为这样数据库要将各个表中的东西都结合起来,然后再排除那些不合适的行,搞不好开销会很大。

  如果不能避免,你应该查看每张要结合起来的表,并且使用以上的策略来建立索引,然后再用EXPLAIN命令验证一下是否使用了你料想中的索引。如果是的话,就OK。不是的话,你可能要建立临时的表来将他们结合在一起,并且使用适当的索引。

  要注意的是,建立太多的索引将会 影响 更新和插入的速度,因为它需要同样更新每个索引文件。对于一个经常需要更新和插入的表格,就没有必要为一个很少使用的where字句单独建立索引了,对于比较小的表,排序的开销不会很大,也没有必要建立另外的索引。

  以上介绍的只是一些十分基本的东西,其实里面的学问也不少,单凭EXPLAIN我们是不能判定该方法是否就是最优化的,每个数据库都有自己的一些优化器,虽然可能还不太完善,但是它们都会在查询时对比过哪种方式较快,在某些情况下,建立索引的话也未必会快,例如索引放在一个不连续的存储空间时,这会 增加 读磁盘的负担,因此,哪个是最优,应该通过实际的使用环境来检验。

在刚开始的时候,如果表不大,没有必要作索引,我的意见是在需要的时候才作索引,也可用一些命令来优化表,例如MySQL可用"OPTIMIZE TABLE"。

综上所述,在如何为数据库建立恰当的索引方面,你应该有一些基本的概念了。

MySQL查看索引:

show  index from tableName


1.添加PRIMARY KEY(主键索引) 

mysql>ALTER TABLE `table_name` ADD PRIMARY KEY ( `column` )

 

2.添加UNIQUE(唯一索引) 
mysql>ALTER TABLE `table_name` ADD UNIQUE (  `column` 

 

3.添加INDEX(普通索引) 

mysql>ALTER TABLE `table_name` ADD INDEX index_name ( `column` ) 

 

4.添加FULLTEXT(全文索引) 

mysql>ALTER TABLE `table_name` ADD FULLTEXT ( `column`) 

 

5.添加多列索引 
mysql>ALTER TABLE `table_name` ADD INDEX index_name ( `column1`, `column2`, `column3` )


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
17天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
1月前
|
SQL 关系型数据库 MySQL
案例剖析:MySQL唯一索引并发插入导致死锁!
案例剖析:MySQL唯一索引并发插入导致死锁!
案例剖析:MySQL唯一索引并发插入导致死锁!
|
25天前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
58 3
Mysql(4)—数据库索引
|
19天前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
42 1
|
8天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
43 0
|
9天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
38 0
|
20天前
|
监控 关系型数据库 MySQL
mysql8索引优化
综上所述,深入理解和有效实施这些索引优化策略,是解锁MySQL 8.0数据库高性能查询的关键。
28 0
|
24天前
|
SQL 关系型数据库 MySQL
美团面试:mysql 索引失效?怎么解决? (重点知识,建议收藏,读10遍+)
本文详细解析了MySQL索引失效的多种场景及解决方法,包括破坏最左匹配原则、索引覆盖原则、前缀匹配原则、`ORDER BY`排序不当、`OR`关键字使用不当、索引列上有计算或函数、使用`NOT IN`和`NOT EXISTS`不当、列的比对等。通过实例演示和`EXPLAIN`命令分析,帮助读者深入理解索引失效的原因,并提供相应的优化建议。文章还推荐了《尼恩Java面试宝典》等资源,助力面试者提升技术水平,顺利通过面试。
|
27天前
|
关系型数据库 MySQL 数据库
深入浅出MySQL索引优化:提升数据库性能的关键
在这个数据驱动的时代,数据库性能的优劣直接关系到应用的响应速度和用户体验。MySQL作为广泛使用的数据库之一,其索引优化是提升查询性能的关键。本文将带你一探MySQL索引的内部机制,分析索引的类型及其适用场景,并通过实际案例演示如何诊断和优化索引,以实现数据库性能的飞跃。
|
29天前
|
SQL 存储 关系型数据库
MySQL新增字段/索引会不会锁表?
MySQL新增字段/索引会不会锁表?