pyhanlp 停用词与用户自定义词典

简介:

hanlp的词典模式
之前我们看了hanlp的词性标注,现在我们就要使用自定义词典与停用词功能了,首先关于HanLP的词性标注方式具体请看HanLP词性标注集。

其核心词典形式如下:

自定义词典
自定义词典有多种添加模式,首先是展示的一个小例子,展示了词汇的动态增加与强行插入,删除等。更复杂的内容请参考后边的第二段代码。

简单的例子
from pyhanlp import *

text = "攻城狮逆袭单身狗,迎娶白富美,走上人生巅峰" # 怎么可能噗哈哈!

print(HanLP.segment(text))

CustomDictionary = JClass("com.hankcs.hanlp.dictionary.CustomDictionary")
CustomDictionary.add("攻城狮") # 动态增加
CustomDictionary.insert("白富美", "nz 1024") # 强行插入

CustomDictionary.remove("攻城狮"); # 删除词语(注释掉试试)

CustomDictionary.add("单身狗", "nz 1024 n 1")

展示该单词词典中的词频统计 展示分词

print(CustomDictionary.get("单身狗"))
print(HanLP.segment(text))

增加用户词典,对其他分词器同样有效

注意此处,CRF分词器将单身狗分为了n 即使单身狗:"nz 1024 n 1"

CRFnewSegment = HanLP.newSegment("crf")
print(CRFnewSegment.seg(text))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
[攻城狮, 逆袭, 单身狗, ,, 迎娶, 白富美, ,, 走上, 人生, 巅峰]
nz 1024 n 1
[攻城狮, 逆袭, 单身狗, ,, 迎娶, 白富美, ,, 走上, 人生, 巅峰]
[攻城, 狮逆袭, 单身狗, ,, 迎娶, 白富美, ,, 走, 上, 人生, 巅峰]
1
2
3
4
复杂的例子
""" 演示自定义词性,以及往词典中插入自定义词性的词语

!!!由于采用了反射技术,用户需对本地环境的兼容性和稳定性负责!!!

TO-DO
如果使用了动态词性之后任何类使用了switch(nature)语句,必须注册每个类
"""

对于系统中已有的词性,可以直接获取

Nature = JClass("com.hankcs.hanlp.corpus.tag.Nature")
pc_nature = Nature.fromString("n")
print(pc_nature)

此时系统中没有"电脑品牌"这个词性

pc_nature = Nature.fromString("电脑品牌")
print(pc_nature)

我们可以动态添加一个

pc_nature = Nature.create("电脑品牌");
print(pc_nature)

可以将它赋予到某个词语

LexiconUtility = JClass("com.hankcs.hanlp.utility.LexiconUtility")
LexiconUtility.setAttribute("苹果电脑", pc_nature)

或者

LexiconUtility.setAttribute("苹果电脑", "电脑品牌 1000")

它们将在分词结果中生效

term_list = HanLP.segment("苹果电脑可以运行开源阿尔法狗代码吗")
print(term_list)
for term in term_list:

if term.nature == pc_nature:
    print("找到了 [{}] : {}\n".format(pc_nature, term.word))

还可以直接插入到用户词典

CustomDictionary = JClass("com.hankcs.hanlp.dictionary.CustomDictionary")
CustomDictionary.insert("阿尔法狗", "科技名词 1024")
StandardTokenizer = JClass("com.hankcs.hanlp.tokenizer.StandardTokenizer")
StandardTokenizer.SEGMENT.enablePartOfSpeechTagging(True) # 依然支持隐马词性标注
term_list = HanLP.segment("苹果电脑可以运行开源阿尔法狗代码吗")
print(term_list)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
n
None
电脑品牌
[苹果电脑/电脑品牌, 可以/v, 运行/vn, 开源/v, 阿尔法/nrf, 狗/n, 代码/n, 吗/y]
找到了 [电脑品牌] : 苹果电脑

[苹果电脑/电脑品牌, 可以/v, 运行/vn, 开源/v, 阿尔法狗/科技名词, 代码/n, 吗/y]
1
2
3
4
5
6
7
关于自定义词典的说明(原作者的原文)
说明
CustomDictionary是一份全局的用户自定义词典,可以随时增删,影响全部分词器。另外可以在任何分词器中关闭它。通过代码动态增删不会保存到词典文件。
中文分词≠词典,词典无法解决中文分词,Segment提供高低优先级应对不同场景,请参考FAQ。
追加词典
CustomDictionary主词典文本路径是data/dictionary/custom/CustomDictionary.txt,用户可以在此增加自己的词语(不推荐);也可以单独新建一个文本文件,通过配置文件CustomDictionaryPath=data/dictionary/custom/CustomDictionary.txt; 我的词典.txt;来追加词典(推荐)。
始终建议将相同词性的词语放到同一个词典文件里,便于维护和分享。
词典格式
每一行代表一个单词,格式遵从[单词] [词性A] [A的频次] [词性B] [B的频次] ... 如果不填词性则表示采用词典的默认词性。
词典的默认词性默认是名词n,可以通过配置文件修改:全国地名大全.txt ns;如果词典路径后面空格紧接着词性,则该词典默认是该词性。
在统计分词中,并不保证自定义词典中的词一定被切分出来。用户可在理解后果的情况下通过Segment#enableCustomDictionaryForcing强制生效。
关于用户词典的更多信息请参考词典说明一章(请看本文最后)。
停用词
关于停用词,我同样先给出了一个简单的例子,你可以使用这个例子来完成你所需要的功能。要注意的一点是,因为java中的类所返回的数据类型与Python不统一,所以当你使用不同的函数的时候,一定要先检查输出结果在Python中的类型,不然可能会出现意想不到的问题。

假如你想了解更多,可以看第二个更复杂的例子。

简单的例子

使用停用词的简单例子

text = "小区居民有的反对喂养流浪猫"
CRFnewSegment = HanLP.newSegment("crf")
term_list = CRFnewSegment.seg(text)

BasicTokenizer = SafeJClass("com.hankcs.hanlp.tokenizer.BasicTokenizer")

term_list = BasicTokenizer.segment(text)

CoreStopWordDictionary = JClass("com.hankcs.hanlp.dictionary.stopword.CoreStopWordDictionary")
CoreStopWordDictionary.apply(term_list)
HanLP.Config.ShowTermNature = False

print(term_list)
print([i.word for i in term_list])
1
2
3
4
5
6
7
8
9
10
11
12
13
14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
[小区, 居民, 反对, 养, 流, 浪, 猫]
['小区', '居民', '反对', '养', '流', '浪', '猫']
1
2
复杂的例子

停用词

在import pyhanlp之前编译自己的Java class,并放入pyhanlp/static中

import os

from pyhanlp.static import STATIC_ROOT, HANLP_JAR_PATH

java_code_path = os.path.join(STATIC_ROOT, 'MyFilter.java')
with open(java_code_path, 'w') as out:

java_code = """

import com.hankcs.hanlp.dictionary.stopword.CoreStopWordDictionary;
import com.hankcs.hanlp.dictionary.stopword.Filter;
import com.hankcs.hanlp.seg.common.Term;

public class MyFilter implements Filter
{

public boolean shouldInclude(Term term)
{
    if (term.nature.startsWith('m')) return true; // 数词保留
    return !CoreStopWordDictionary.contains(term.word); // 停用词过滤
}

}
"""

out.write(java_code)

os.system('javac -cp {} {} -d {}'.format(HANLP_JAR_PATH, java_code_path, STATIC_ROOT))

编译结束才可以启动hanlp

CoreStopWordDictionary = JClass("com.hankcs.hanlp.dictionary.stopword.CoreStopWordDictionary")
Filter = JClass("com.hankcs.hanlp.dictionary.stopword.Filter")
Term = JClass("com.hankcs.hanlp.seg.common.Term")
BasicTokenizer = JClass("com.hankcs.hanlp.tokenizer.BasicTokenizer")
NotionalTokenizer = JClass("com.hankcs.hanlp.tokenizer.NotionalTokenizer")

text = "小区居民有的反对喂养流浪猫,而有的居民却赞成喂养这些小宝贝"

可以动态修改停用词词典

CoreStopWordDictionary.add("居民")
print(NotionalTokenizer.segment(text))
CoreStopWordDictionary.remove("居民")
print(NotionalTokenizer.segment(text))

可以对任意分词器的结果执行过滤

term_list = BasicTokenizer.segment(text)
print(term_list)
CoreStopWordDictionary.apply(term_list)
print(term_list)

还可以自定义过滤逻辑

MyFilter = JClass('MyFilter')
CoreStopWordDictionary.FILTER = MyFilter()
print(NotionalTokenizer.segment("数字123的保留")) # “的”位于stopwords.txt所以被过滤,数字得到保留
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
[小区/n, 反对/v, 喂养/v, 流浪猫/nz, 赞成/v, 喂养/v, 小宝贝/nz]
[小区/n, 居民/n, 反对/v, 喂养/v, 流浪猫/nz, 居民/n, 赞成/v, 喂养/v, 小宝贝/nz]
[小区/n, 居民/n, 有/vyou, 的/ude1, 反对/v, 喂养/v, 流浪猫/nz, ,/w, 而/cc, 有的/rz, 居民/n, 却/d, 赞成/v, 喂养/v, 这些/rz, 小宝贝/nz]
[小区/n, 居民/n, 反对/v, 喂养/v, 流浪猫/nz, 居民/n, 赞成/v, 喂养/v, 小宝贝/nz]
[数字/n, 123/m, 保留/v]
1
2
3
4
5
词典说明(原作者原文)
本章详细介绍HanLP中的词典格式,满足用户自定义的需要。HanLP中有许多词典,它们的格式都是相似的,形式都是文本文档,随时可以修改。

基本格式
词典分为词频词性词典和词频词典。

词频词性词典(如CoreNatureDictionary.txt)
每一行代表一个单词,格式遵从[单词] [词性A] [A的频次] [词性B] [B的频次] ...。
支持省略词性和频次,直接一行一个单词。
.txt词典文件的分隔符为空格或制表符,所以不支持含有空格的词语。如果需要支持空格,请使用英文逗号,分割的纯文本.csv文件。在使用Excel等富文本编辑器时,则请注意保存为纯文本形式。
词频词典(如CoreNatureDictionary.ngram.txt)
每一行代表一个单词或条目,格式遵从[单词] [单词的频次]。
每一行的分隔符为空格或制表符。
少数词典有自己的专用格式,比如同义词词典兼容《同义词词林扩展版》的文本格式,而转移矩阵词典则是一个csv表格。

下文主要介绍通用词典,如不注明,词典特指通用词典。

数据结构
Trie树(字典树)是HanLP中使用最多的数据结构,为此,我实现了通用的Trie树,支持泛型、遍历、储存、载入。

用户自定义词典采用AhoCorasickDoubleArrayTrie和二分Trie树储存,其他词典采用基于双数组Trie树(DoubleArrayTrie)实现的AC自动机AhoCorasickDoubleArrayTrie。关于一些常用数据结构的性能评估,请参考wiki。

储存形式
词典有两个形态:文本文件(filename.txt)和缓存文件(filename.txt.bin或filename.txt.trie.dat和filename.txt.trie.value)。

文本文件
采用明文储存,UTF-8编码,CRLF换行符。
缓存文件
就是一些二进制文件,通常在文本文件的文件名后面加上.bin表示。有时候是.trie.dat和.trie.value。后者是历史遗留产物,分别代表trie树的数组和值。
如果你修改了任何词典,只有删除缓存才能生效。
修改方法
HanLP的核心词典训练自人民日报2014语料,语料不是完美的,总会存在一些错误。这些错误可能会导致分词出现奇怪的结果,这时请打开调试模式排查问题:(本文作者FontTian注:在本文动笔前,原词典一进变为了9970万版本的最大中文语料。但是词典说明中原作者没改)

HanLP.Config.enableDebug();
1
1
核心词性词频词典
比如你在data/dictionary/CoreNatureDictionary.txt中发现了一个不是词的词,或者词性标注得明显不对,那么你可以修改它,然后删除缓存文件使其生效。
目前CoreNatureDictionary.ngram.txt的缓存依赖于CoreNatureDictionary.txt的缓存,修改了后者之后必须同步删除前者的缓存,否则可能出错
核心二元文法词典
二元文法词典data/dictionary/CoreNatureDictionary.ngram.txt储存的是两个词的接续,如果你发现不可能存在这种接续时,删掉即可。
你也可以添加你认为合理的接续,但是这两个词必须同时在核心词典中才会生效。
命名实体识别词典
基于角色标注的命名实体识别比较依赖词典,所以词典的质量大幅影响识别质量。
这些词典的格式与原理都是类似的,请阅读相应的文章或代码修改它。

文章来源于Font Tian的博客

相关文章
|
6月前
|
机器学习/深度学习 人工智能 数据可视化
《深度剖析:DevEco Studio 如何实现人工智能模型的高效可视化开发》
在科技浪潮下,人工智能与鸿蒙系统的融合推动了创新应用的发展。DevEco Studio作为华为的一站式开发平台,在AI模型可视化开发中扮演重要角色。通过搭建基础环境、引入AI框架、运用智能代码编辑和低代码工具、多端实时预览及接入AI辅助编程等功能,开发者可高效构建智能应用,优化用户体验。DevEco Studio将持续升级,助力鸿蒙生态的创新发展。
157 4
|
8月前
|
Linux 网络性能优化 网络安全
Linux(openwrt)下iptables+tc工具实现网络流量限速控制(QoS)
通过以上步骤,您可以在Linux(OpenWrt)系统中使用iptables和tc工具实现网络流量限速控制(QoS)。这种方法灵活且功能强大,可以帮助管理员有效管理网络带宽,确保关键业务的网络性能。希望本文能够为您提供有价值的参考。
1207 28
Mac 复制文件名目录路径
Mac 复制文件名目录路径
1229 0
|
9月前
|
JSON 人工智能 自然语言处理
小模型也能有类o1的慢思考能力?使用CAMEL生成CoT数据、Unsloth微调Qwen2.5-1.5B模型并上传至Hugging Face
本项目利用CAMEL生成高质量的CoT数据,结合Unsloth对Qwen2.5-1.5B模型进行微调,并将结果上传至Hugging Face。通过详细步骤介绍从数据生成到模型微调的完整流程,涵盖环境配置、API密钥设置、ChatAgent配置、问答数据生成与验证、数据转换保存、模型微调及推理保存等内容。最终展示了如何优化问答系统并分享实用技巧。 [CAMEL-AI](https://github.com/camel-ai/camel) 是一个开源社区,致力于智能体扩展研究。欢迎在GitHub上关注并加入我们!
1105 15
|
SQL 算法 数据挖掘
动态规划Dynamic programming详解-编辑距离问题【python】
动态规划Dynamic programming详解-编辑距离问题【python】
|
人工智能 资源调度 算法
内附原文|SIGMOD’24:百万核的智能调度,云数仓如何结合AI处理用户混合负载
论文提出的Flux通过使用AI技术将短时和长时查询解耦进行自动弹性,解决了云数据仓库的性能瓶颈,同时支持了资源按需预留。Flux优于传统的方法,查询响应时间 (RT) 最多可减少75%,资源利用率提高19.0%,成本开销降低77.8%。
内附原文|SIGMOD’24:百万核的智能调度,云数仓如何结合AI处理用户混合负载
|
数据采集 数据可视化 大数据
处理大数据:Python 与数据库的结合
在处理大数据的领域中,Python 凭借其强大的数据处理和分析能力,成为了与数据库结合的理想选择。Python 提供了丰富的数据库接口和工具,可以与各种主流的关系型数据库和 NoSQL 数据库进行高效交互。本文将探讨 Python 在处理大数据方面与数据库结合的一些关键技术和应用。
|
存储 SQL JSON
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)(一)
5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)(一)
|
缓存 JavaScript SEO
vue3优点和缺点?
vue3优点和缺点?
483 0

热门文章

最新文章