phoneME Feature MR4介绍

简介: 版权声明:本文为博主chszs的原创文章,未经博主允许不得转载。 https://blog.csdn.net/chszs/article/details/4033402 phon...
版权声明:本文为博主chszs的原创文章,未经博主允许不得转载。 https://blog.csdn.net/chszs/article/details/4033402

phoneME Feature MR4介绍

 

 phoneME Feature Software (MR4)

Release Description

phoneME™ Feature software (MR4) adds new capabilities and features to previous releases, as outlined in the feature list below. As always, we look forward to active community participation as this development effort proceeds.

Feature List

The following features are part of the phoneME Feature software (MR4) release:

  * Ongoing support for the following Java Specification Requests (JSRs):
  o File Connection and Personal Information Management (JSR 75)
  o Bluetooth and OBEX (JSR 82)
  o Mobile Information Device Profile (JSR 118)
  o Wireless Messaging API 1.0 (JSR 120)
  o Mobile Media API (JSR 135)
  o Webservices API (JSR 172)
  o Security and Trust Services API (JSR 177)
  o Location API for J2ME (JSR 179)
  o Session Initiation Protocol API (JSR 180)
  o Wireless Messaging API 2.0 (JSR 205)
  o Content Handler API (JSR 211)
  o Scalable 2D Vector Graphics (JSR 226)
  o Payment API (JSR 229)
  o Advanced Multimedia Supplements (JSR 234)
  o Mobile Internationalization API (JSR 238)
  o Java Binding for the OpenGL(R) ES API (JSR 239)
  o Mobile Sensors API (JSR 256)
  o XML API for Java ME (JSR 280)
  * Enhancements to the Application Management System (AMS):
  o Clamshell phone support
  o Right to left support
  o Updated JAD properties
  o Inter-MIDlet communication
  o Integration with Native UI
  o Slave mode
  o Dynamically downloadable JSRs
  * Support for JavaCall™ porting interfaces on Win32 platform
  * Enhanced streaming media support
  * Security enhancements
  * Enhanced logging capabilities
  * Enhanced on-device debugging capabilities
  * Improved performance and quality

The 3D Graphics optional package (JSR 184) is not included in this release. -->

Supported Platforms

phoneME Feature software (MR4) is fully supported on the Windows x86 platform.

Note: phoneME Feature software (MR4) supports building on the Linux for ARM target platform and has been ported to the Texas Instruments P2SAMPLE64-V6 board. However, this is not a fully-qualified port; it is meant to serve as a starting point only.

For more information on building phoneME Feature software (MR4) for the Linux on ARM platform, see the Sun Java Wireless Client Software Build Guide.

Getting Started

To download and contribute to the platform, please refer to the Mobile & Embedded Community Governance and the Sun Contributor Agreement.

To access the software, visit the code repository and the downloads page. See also the Getting Started Guide.

Additional Documentation

Documentation for Sun’s commercial product offering, which includes the implementation from phoneME Feature, is available. Please note that Sun’s commercial products (CLDC HotSpot Implemenation 2.2 and Sun Java Wireless Client software 2.2) include additional components that could not be made available in open source at this time due to legal limitations.

The commercial documentation provides additional detail that applies to phoneME Feature software (MR4), but also includes references to components that are not present in the open source. For more information, see the SJWC 2.2 Documentation and CLDC HI 2.2 Documentation.


目录
相关文章
|
7月前
|
编解码 人工智能 数据库
JRC Monthly Water History, v1.4数据集
JRC Monthly Water History, v1.4数据集
97 0
paraforme支持speech_noise_threshold吗?
请问:speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch 这个模型支持设置 speech_noise_threshold 这个参数吗 ? vad 本身是支持的,但对这个集成的模型好像不起作用? 如果支持,应该如何正确地设置呢 ? 如果不支持,那该模型有没有什么方法可以过滤掉背景噪声? 经常会有背景噪声被识别出文字
66 0
|
机器学习/深度学习 自然语言处理 算法
ACL 2019 - AMR Parsing as Sequence-to-Graph Transduction
我们提出了一个基于注意力的模型,将AMR解析视为序列到图的转导。与大多数依赖于预训练的对齐器、外部语义资源或数据扩充的AMR解析器不同
156 0
ACL 2019 - AMR Parsing as Sequence-to-Graph Transduction
|
机器学习/深度学习 自然语言处理 算法
ACL 2022:Graph Pre-training for AMR Parsing and Generation
抽象语义表示(AMR)以图形结构突出文本的核心语义信息。最近,预训练语言模型(PLM)分别具有AMR解析和AMR到文本生成的高级任务。
165 0
《Distributed End-to-End Drug Similarity Analytics and Visualization Workflow》电子版地址
Distributed End-to-End Drug Similarity Analytics and Visualization Workflow
81 0
《Distributed End-to-End Drug Similarity Analytics and Visualization Workflow》电子版地址
Re1:读论文 C&S (Correct and Smooth) Combining Label Propagation and Simple Models Out-performs Graph Ne
Re1:读论文 C&S (Correct and Smooth) Combining Label Propagation and Simple Models Out-performs Graph Ne
Re1:读论文 C&S (Correct and Smooth) Combining Label Propagation and Simple Models Out-performs Graph Ne
|
机器学习/深度学习 编解码 并行计算
Paper:《YOLOv4: Optimal Speed and Accuracy of Object Detection》的翻译与解读
Paper:《YOLOv4: Optimal Speed and Accuracy of Object Detection》的翻译与解读
Paper:《YOLOv4: Optimal Speed and Accuracy of Object Detection》的翻译与解读
|
机器学习/深度学习 计算机视觉 索引
FPT: Feature Pyramid Transfomer
本文介绍了一个在空间和尺度上全活跃特征交互(fully active feature interaction across both space and scales)的特征金字塔transformer模型,简称FPT。该模型将transformer和Feature Pyramid结合,可用于像素级的任务,在论文中作者进行了目标检测和实力分割,都取得了比较好的效果。为了讲解清楚,若有transformer不懂的读者,关于transformer可以在公众号中看另一篇文《Transformer解读》
FPT: Feature Pyramid Transfomer
HDOJ 1095 A+B for Input-Output Practice (VII)
HDOJ 1095 A+B for Input-Output Practice (VII)
113 0
|
机器学习/深度学习 资源调度 算法

热门文章

最新文章