Python 数据库骚操作 -- MySQL

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群版 2核4GB 100GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用版 2核4GB 50GB
简介: 今天这篇主要介绍 MySQL 的 orm 库 SQLAlchemy 。

目录

 ●   前言
 ●   MySQL GUI 工具
 ●   MySQL 遇上 Docker
 ●   增删改查
 ●   一对多
 ●   一对一
 ●   多对多

 ●  后记

前言

今天这篇是三大数据库的结尾篇,前面两篇分别是:

Python 数据库骚操作 -- MongoDB

Python 数据库骚操作 -- Redis

今天这篇主要介绍 MySQL 的 orm 库 SQLAlchemy 。那什么是 orm 呢?Object Relational Mapper,描述程序中对象和数据库中数据记录之间的映射关系的统称。介绍完了,那就走起呗!

MySQL GUI 工具

首先介绍一款 MySQL 的 GUI 工具 Navicat for MySQL,初学 MySQL 用这个来查看数据真的很爽。可以即时看到数据的增删改查,不用操作命令行来查

975c1dc83434219af433310d9f843cced634363e

MySQL 遇上 Docker

继续分享一下 Docker compose 代码片段,用过 docker 之后,我相信你再也不会为了配置各种开发环境而烦恼了。

version: '3'
services:
mysql_container:
image: mysql
ports:
- "3306:3306"
volumes:
- /usr/local/db/mysql:/var/lib/mysql
# - /root/docker/test-mysql/conf.d:/etc/mysql/conf.d
environment:
- MYSQL_DATABASE=dbname
- MYSQL_ROOT_PASSWORD=your_password
增删改查
首先定义表结构
# 创建单表
class Users(Base):
# 表名
__tablename__ = 'users'
id = Column(BIGINT, primary_key=True, autoincrement=True)
# 定义字段
name = Column(String(32))
age = Column(Integer())
# 初始化数据库
def init_db():
Base.metadata.create_all(engine)
# 删除数据库
def drop_db():
Base.metadata.drop_all(engine)
连接
from sqlalchemy import create_engine, Column, Integer, String, BIGINT, ForeignKey, UniqueConstraint, Index, and_, or_, inspect
from sqlalchemy.orm import sessionmaker, relationship,contains_eager
# echo 为 True 将会打印 SQL 原生语句
engine = create_engine('mysql+pymysql://username:password@localhost:3306/db_name',echo=True)
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
Session = sessionmaker(bind=engine)
session = Session()
增加
new_user = Users(name='zone', age=18)
session.add(new_user)
# 批量添加
session.add_all([
User(name='zone2', age=25),
User(name='zone3', age=32)
])
# 提交
session.commit()

cb27af987659c9eefaeb654b030bf7472a502c21
删除
session.query(User).filter_by(name="zone").delete()
# 提交
session.commit()
修改
session.query(User).filter(User.name == 2).update({"name": "new name"})
session.query(User).filter(User.id >= 3).update({User.name: "关注公众号【zone7】"}, synchronize_session=False)
session.query(User).filter(User.age == 50).update({"age": 123}, synchronize_session="evaluate")
session.commit()

查找

查找的需求会比较多变,我这边就列出比较常见的查询需求。

result = session.query(User).all() # 结果为一个列表 
result = session.query(User.id, User.age).all() 
result = session.query(User).filter_by(name='zone').first() 
result = session.query(User).filter_by(name='zone2').all() 
# 与、或 
result = session.query(User).filter_by(and_(name='zone5',age="23")).all() 
result = session.query(User).filter_by(or_(name='zone5',age="23")).all() 
# 模糊查询 
result = session.query(User).filter(User.name.like('zon%')).all() 
# 排序 
result = session.query(User).order_by(User.age.desc()).all()
# 分页查询
result = session.query(User).offset(1).limit(1).all() 

一对多

关系型数据库,少不了各种表与表的关系。back_populates 在一对多的关系中建立双向的关系,这样的话在对方看来这就是一个多对一的关系。

def one_to_many():
class Parent(Base):
__tablename__ = 'parent'
id = Column(Integer, primary_key=True)
children = relationship("Child", back_populates="parent")

class Child(Base):
__tablename__ = 'child'
id = Column(Integer, primary_key=True)
parent_id = Column(Integer, ForeignKey('parent.id'))
parent = relationship("Parent", back_populates="children")
name = Column(String(32))

# 子表类中附加一个 relationship() 方法
# 并且在(父)子表类的 relationship() 方法中使用 relationship.back_populates 参数

drop_db()
init_db()

child1 = Child(name="zone1")
child2 = Child(name="zone2")
parent = Parent(children=[child1, child2])
session.add(parent)
session.commit()
result = session.query(Parent).join(Child).first()
print(object_as_dict(result.children[0]))

one_to_many()

运行结果

d881b583a1457b4e755602eeacd2c48fbdce7774

一对一

参数 back_populates 指定双向关系,参数 uselist=False 需要在一对多关系基础上,父表中使用 uselist 参数来表示。

def one_to_one():
class Parent(Base):
__tablename__ = 'parent'
id = Column(Integer, primary_key=True)
child = relationship("Child", uselist=False, back_populates="parent")

class Child(Base):
__tablename__ = 'child'
id = Column(Integer, primary_key=True)
parent_id = Column(Integer, ForeignKey('parent.id'))
parent = relationship("Parent", back_populates="child")
name = Column(String(32))

# 清空数据库,并且重新初始化
drop_db()
init_db()
child = Child(name="zone")
parent = Parent(child=child)
session.add(parent)
session.commit()

result = session.query(Parent).join(Child).first()
print(object_as_dict(result.child))

one_to_one()

1afea1997e129d9c34be380694953ae59d6ed33e
多对多

多对多关系会在两个类之间增加一个关联的表来表示其中的关系。这个关联的表在 relationship() 方法中通过 secondary 参数来表示。通常,这个表会通过 MetaData 对象来与声明基类关联。

def many_to_many():
association_table = Table('association', Base.metadata,
Column('left_id', Integer, ForeignKey('left.id')),
Column('right_id', Integer, ForeignKey('right.id'))
)

class Parent(Base):
__tablename__ = 'left'
id = Column(Integer, primary_key=True,autoincrement=True)
children = relationship(
"Child",
secondary=association_table,
back_populates="parents")

class Child(Base):
__tablename__ = 'right'
id = Column(Integer, primary_key=True,autoincrement=True)
name = Column(String(32))
parents = relationship(
"Parent",
secondary=association_table,
back_populates="children")

# 清空数据库,并且重新初始化
drop_db()
init_db()

child1 = Child(name="zone1")
child2 = Child(name="zone2")
child3 = Child(name="zone3")

parent = Parent()
parent2 = Parent()
# parent 添加 child
parent.children.append(child1)
parent.children.append(child2)
parent2.children.append(child1)
parent2.children.append(child2)
# save
session.add(parent)
session.add(parent2)
session.commit()
# 查询
result = session.query(Parent).first()
print(object_as_dict(result))
print(object_as_dict(result.children[1]))
result2 = session.query(Child).first()
print(object_as_dict(result2))
print(object_as_dict(result2.parents[1]))

many_to_many()

adb96fa5b43a9bcacde5343771a1e2b92f3bc61e

第一红框为 result 第二红框为 result2


原文发布时间为:2018-11-19
本文作者:zone7
本文来自云栖社区合作伙伴“ 小詹学Python”,了解相关信息可以关注“ 小詹学Python”。
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
8天前
|
关系型数据库 MySQL 网络安全
Mysql 数据库主从复制
在MySQL主从复制环境中,配置了两台虚拟机:主VM拥有IP1,从VM有IP2。主VM的`my.cnf`设置server-id为1,启用二进制日志;从VM设置server-id为2,开启GTID模式。通过`find`命令查找配置文件,编辑`my.cnf`,在主服务器上创建复制用户,记录二进制日志信息,然后锁定表并备份数据。备份文件通过SCP传输到从服务器,恢复数据并配置复制源,启动复制。检查复制状态确认运行正常。最后解锁表,完成主从同步,新用户在从库中自动更新。
975 6
Mysql 数据库主从复制
|
1天前
|
SQL Oracle 关系型数据库
MySQL、SQL Server和Oracle数据库安装部署教程
数据库的安装部署教程因不同的数据库管理系统(DBMS)而异,以下将以MySQL、SQL Server和Oracle为例,分别概述其安装部署的基本步骤。请注意,由于软件版本和操作系统的不同,具体步骤可能会有所变化。
14 3
|
9天前
|
安全 关系型数据库 MySQL
【Python】已解决:pymysql.err.OperationalError:(2003 “Can’t connect to MySQL server on ‘localhost’ ([WinEr
【Python】已解决:pymysql.err.OperationalError:(2003 “Can’t connect to MySQL server on ‘localhost’ ([WinEr
23 1
|
9天前
|
SQL 关系型数据库 MySQL
「Python入门」python操作MySQL和SqlServer
**摘要:** 了解如何使用Python的pymysql模块与MySQL数据库交互。首先,通过`pip install pymysql`安装模块。pymysql提供与MySQL的连接功能,例如创建数据库连接、执行SQL查询。在设置好MySQL环境后,使用`pymysql.connect()`建立连接,并通过游标执行SQL(如用户登录验证)。注意防止SQL注入,使用参数化查询。增删改操作需调用`conn.commit()`来保存更改。pymssql模块类似,但导入和连接对象创建略有不同。
11 0
「Python入门」python操作MySQL和SqlServer
|
19小时前
|
DataWorks 关系型数据库 MySQL
DataWorks操作报错合集之从OceanBase(OB)数据库调度数据到MySQL数据库时遇到连接报错,该怎么办?
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
8天前
|
关系型数据库 数据库 RDS
利用DTS将自建mysql5.7版本数据库迁移至对应rds报错
利用DTS将自建mysql5.7版本数据库迁移至对应rds报错
30 0
|
8月前
|
关系型数据库 数据库 Python
Python连接DB2数据库
Python连接DB2数据库
|
2月前
|
SQL 关系型数据库 MySQL
用 Python 连接数据库并进行查询。
【2月更文挑战第12天】【2月更文挑战第32篇】用 Python 连接数据库并进行查询。
|
23天前
|
SQL 关系型数据库 数据库连接
Python连接线上数据库的实战指南
Python连接线上数据库的实战指南
25 1
|
26天前
|
SQL Oracle 关系型数据库
Python连接数据库进行数据查询的操作代码
mysql数据库(mariadb) 连接数据库 首先,你需要使用MySQLdb.connect()函数建立与MySQL数据库的连接。你需要提供数据库服务器的地址(host),用户名(user),密码(passwd),以及你想要操作的数据库名称(db)。 创建Cursor对象 一旦建立了数据库连接,你可以使用连接对象的cursor()方法来创建一个cursor对象。这个方法返回一个cursor实例,你可以使用这个实例来执行SQL查询和命令。