推荐 :手把手教你用Python处理非平稳时间序列(附代码)

简介:

简介

预测一个家庭未来三个月的用电量,估计特定时期道路上的交通流量,预测一只股票在纽约证券交易所交易的价格……这些问题都有什么共同点?

它们都属于时间序列数据的范畴!如果没有“时间”成分,就无法准确地预测出结果。随着我们周围世界产生的数据越来越多,时间序列预测已成为数据科学家必须掌握的一项越来越关键的技能。

然而,时间序列是一个复杂的话题,它具有多面性。

b8c43929a4d245509a6a51f15db5c09f6534ae83

首先,要想使预测模型正常工作,就必须使时间序列保持平稳。为什么?因为绝大部分原始数据都会有非平稳的趋势。如果有很多不规则的尖峰,你怎么能确保模型正常工作呢?

本文将重点介绍时间序列数据的平稳性检验方法。在此假设读者已熟悉时间序列、ARIMA和平稳性的概念,以下是一些包含基础内容的参考资料:

 ●  时间序列建模完整教程
 ●  给初学者的时间序列预测综合指南

目录

1. 平稳简介

2. 加载数据

3. 检验平稳的方法

 ●  ADF检验
 ●  KPSS检验

4. 平稳的种类

 ●  严格平稳
 ●  趋势平稳
 ●  差分平稳

5. 时间序列平稳化

 ●  差分
 ●  季节性差分
 ●  对数变换

1. 平稳简介

“平稳”是处理时间序列数据时遇到的最重要的概念之一:平稳序列是指其特性-均值、方差和协方差不随时间而变化的序列。

让我们用一个直观的例子来理解这一点。考虑以下三个图形:

1346556ea56cfa5aa26deab1004e1ffa03183ba3

 ●  在第一幅图中,我们可以清楚地看到,均值随时间而变化(增加),呈现上升的趋势。因此,这是一个非平稳序列。平稳序列不应该呈现出随时间变化的趋势。
 ●  第二幅图显然看不到序列的趋势,但序列的变化是一个时间的函数。正如前面提到的,平稳序列的方差必须是一个常数。
 ●  再来看第三幅图,随着时间的增加,序列传播后变得更近,这意味着协方差是时间的函数。

上述三个例子均是非平稳时间序列。现在来看第四个图:

f6053637213ed607c3b5a5d143597910f313c852

在这张图中,均值、方差和协方差都是常数,这就是平稳时间序列。

再想一想,上面的哪一幅图预测未来会更容易呢?第四个图,对吧?大多数统计模型都要求序列是平稳的,这样才能进行有效和精确的预测。

因此,总的来说,平稳时间序列是一个不依赖时间变化 (即均值、方差和协方差不随时间变化)的时间序列。在下一节中,我们将介绍各种检测给定序列是否平稳的方法。

2. 加载数据

在本节和后续几节中,将介绍检测时间序列数据的平稳性的方法,以及如何处理非平稳序列。同时,本文还提供了相应的Python代码。大家可以到:AirPassengers下载文中使用的数据集。

在继续分析数据集之前,首先加载和预处理数据。

9eea1c553c3ebe2c76f072aa09e0a08786bb7cca

好了,看来可以继续了!

3. 检验平稳的方法

下一步是确定给定的序列是否是平稳的,并对它做相应的处理。本节将介绍一些常见的方法,利用这些方法来检测序列是否平稳。

目视检验

看一下我们在上一节中使用的图形,仅需通过目测图形,便能够识别出序列的均值和方差是否随时间变化。同样,通过绘制数据图形,便能确定该序列的属性是否随时间而变化。

cbce31d981b2272b933d8aa2ce88cf296028cd61

显然,通过作图,可以看到序列的趋势(变化的均值),然而,这种目视检测方法得到的结果可能不准确。最好是用一些统计检验方法来验证观测结果。

统计检验

可以利用统计检验来代替目视检验:比如单位根平稳检验。单位根表名给定序列的统计特性(均值,方差和协方差)不是时间的常数,这是平稳时间序列的先决条件。下面是它的数学解释:

假设我们有一个时间序列:

bb3559320d6fbba6ec8675899ce7a8683ab10765

其中yt是t时刻的数据值,ε t 是误差项。需要利用yt-1的值来计算yt,即:

7f2da9e8d809d1d67e89c054d258463061849bcc

如果利用所有的观察值,yt 的值将是:

b100c05848ab1228332645ed15dcee6fb14cd230

假设在上述方程中a的值为1(单位),则预测值将等于yt-n 和从t-n到t的所有误差之和,这意味着方差将随着时间的推移而增大,这就是时间序列中的单位根。众所周知,平稳时间序列的方差不能是时间的函数。单元根检验通过检查a=1的值来检查序列中是否存在单位根。以下是两个最常用的单位根平稳检测方法:

ADF(增补迪基-福勒)检验

The Dickey Fuller test is one of the most popular statistical tests. It can be used to determine the presence of unit root in the series, and hence help us understand if the series is stationary or not. The null and alternate hypothesis of this test are:

迪基-福勒(Dickey Fuller)检验是最流行的统计检验方法之一,可以用它来确定序列中单位根的存在,从而帮助判断序列是否是平稳。这一检验的原假设与备择假设如下:

原假设:序列有一个单位根(a=1的值)

备择假设:该序列没有单位根。

如果不能拒绝原假设,则该序列是非平稳的,这意味着序列可以是线性的,也可以是差分平稳的(将在下一节中更多地了解差分平稳)。

Python代码:

b3e6ea7d32f3e7340d20d27e1a28ffa19bd6cf8a

ADF检验结果:ADF检验的统计量为1%,p值为5%,临界值为10%,置信区间为10%。我们对本序列的检验结果如下:

32ead3d3da1c31d62db44e098df40dcad8b42373

平稳性检验:如果检验统计量小于临界值,我们可以拒绝原假设(也就是序列是平稳的)。当检验统计量大于临界值时,不能拒绝原假设(这意味着序列不是平稳的)。

在上面的例子中,检验统计量>临界值,这意味着序列不是平稳的。这证实了我们最初在目视检测中观察的结果。

KPSS(科瓦特科夫斯·基菲利普·斯施密特·辛)检验

KPSS检验是另一种用于检查时间序列的平稳性 (与迪基-福勒检验相比稍逊一筹) 的统计检验方法。KPSS检验的原假设与备择假设与ADF检验的原假设与备择假设相反,常造成混淆。

KPSS检验的作者将原假设定义为趋势平稳,并将备择假设定义为单位根序列。我们将在下一节详细了解趋势平稳。现在,来看一下KPSS检验的实现,并查看KPSS检验的结果。

原假设:序列是趋势平稳的。

备择假设:序列有一个单位根(序列是非平稳的)。

Python代码:

20be29176aac76d7d607edd5d67799987d4aef05

KPSS检验结果:KPSS检验-检验统计量、p-值和临界值和置信区间分别为1%、2.5%、5%和10%。对于航空乘客数据集的检验结果如下:

23dcb4dd86383e536983846ddc86d67bec3fa539

平稳性检验:如果检验统计量大于临界值,则拒绝原假设(序列不是平稳的)。如果检验统计量小于临界值,则不能拒绝原假设(序列是平稳的)。对于航空乘客数据集来说,在所有置信区间,检验统计量的值都大于临界值,因此可以说该序列是不平稳的。

在为时间序列数据集准备模型之前,通常会同时进行两种检验。有一次,这两种检验显示出相互矛盾的结果:其中一个检验结果表明该序列是平稳的,而另一个则表明该序列是非平稳的!我困惑了好几个小时,想弄清楚这是怎么回事。后来才知道,序列的平稳性有多种类型。

综上所述,ADF检验有线性平稳或差分平稳的备择假设,而KPSS检验则是识别序列的趋势平稳。

4. 平稳的种类

通过了解不同类型的平稳,来解释上述检验的结果。

 ●  严格平稳: 严格平稳序列满足平稳过程的数学定义。严格平稳序列的均值、方差和协方差均不是时间的函数。我们的目标是将一个非平稳序列转化为一个严格平稳序列,然后对它进行预测。
 ●  趋势平稳: 没有单位根但显示出趋势的序列被称为趋势平稳序列。一旦去除趋势之后,产生的序列将是严格平稳的。在没有单位根的情况下,KPSS检测将该序列归类为平稳。这意味着序列可以是严格平稳的,也可以是趋势平稳的。
 ●  差分平稳: 通过差分可以使时间序列成为严格平稳的时间序列。ADF检验也称为差分平稳性检验。

应用两种检验总会更优些,通过两种检验之后,可以确定这个序列是否是平稳的。下面,来看一下应用两种平稳检验后的可能结果:

 ●  结果1:两种检验均得出结论:序列是非平稳的->序列是非平稳的
 ●  结果2:两种检验均得出结论:序列是平稳的->序列是平稳的
 ●  结果3:KPSS =平稳;ADF =非平稳->趋势平稳,去除趋势后序列严格平稳
 ●  结果4:KPSS =非平稳;ADF =平稳->差分平稳,利用差分可使序列平稳。

5. 时间序列的平稳化

在熟悉了平稳性的概念及其不同的类型之后,接下来可以对序列进行平稳化操作。请记住,为了建立时间序列预测模型,必须首先将任何非平稳序列转换为平稳序列。

差分化

在该方法中,计算序列中连续项的差值。执行差分操作通常是为了消除均值的变化。从数学角度,差分可以写成:

yt‘ = yt – y(t-1)

其中yt 是t时刻的数值。

对序列差分化后,绘制出结果:

84da2fbfc7f88315a84819d05bbc34701ae6c7e1

季节性差分

在季节性差分中,不计算连续值之间的差异,而是计算观察值与同一季节的先前观察值之间的差异。例如,星期一的观察值将与上星期一的观察值相减。从数学角度,它可以写成:

yt‘ = yt – y(t-n)

d8bb6cf74c42305f5051d3cbe0afc1a03c9c5c16

变换

变换用于对方差为非常数的序列进行平稳化。常用的变换方法包括幂变换、平方根变换和对数变换。对飞机乘客数据集进行快速对数转换和差分:

86c10c964550434c8982c7e5a51aef216f4caa34

可以看出,这个图形比先前的图形有了很大的改善。通过对这个序列进行平方根或幂变换,看看是否得出了更好的结果。欢迎在下面的评论里分享你的发现!

尾注

本文介绍了检验时间序列平稳性的不同方法。但并不止步于此,下一步是对得到的序列应用一个预测模型。可以参考以下文章来构建这样的模型:给初学者的时间序列预测综合指南(Beginner’s Guide to Time Series Forecast)。

如果对本文有任何问题或反馈,可以在下面的评论部分与我联系。

还可以在Analytics Vidhya的Android应用程序上阅读这篇文章

e1adb14db0d1a2faf18811d8cb2ee257d4d65c32


原文发布时间为:2018-11-17本文来自云栖社区合作伙伴“ 数据分析”,了解相关信息可以关注“ 数据分析”。
相关文章
|
7月前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
856 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
5月前
|
数据可视化 数据挖掘 数据安全/隐私保护
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳
时间序列动量策略(TSMOM)是一种基于资产价格趋势的量化交易方法,通过建立多头或空头头寸捕捉市场惯性。然而,传统TSMOM策略因风险敞口不稳定而面临收益波动问题。波动率调整技术通过动态调节头寸规模,维持恒定风险水平,优化了策略表现。本文系统分析了波动率调整TSMOM的原理、实施步骤及优势,强调其在现代量化投资中的重要地位,并探讨关键参数设定与实际应用考量,为投资者提供更平稳的风险管理体验。
173 4
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳
|
9月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
292 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
5月前
|
存储 数据采集 大数据
Python推导式进阶指南:优雅初始化序列的科学与艺术
本文系统讲解Python推导式的用法与技巧,涵盖列表、字典、集合推导式及生成器表达式。通过代码示例和性能对比,展示推导式在数据结构初始化中的优势:简洁高效、执行速度快30%-50%。文章分析基础语法、核心应用场景(如序列构造、键值对转换、去重运算)及嵌套使用,并探讨使用边界与最佳实践,强调可读性优先原则。最后指出,合理运用推导式能显著提升代码质量和处理效率,同时避免过度复杂化的陷阱。
113 0
|
9月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
299 37
Python时间序列分析工具Aeon使用指南
|
机器学习/深度学习 数据采集 算法
时间序列结构变化分析:Python实现时间序列变化点检测
在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。
1317 1
|
8月前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
机器学习/深度学习 算法 数据挖掘
6种有效的时间序列数据特征工程技术(使用Python)
在本文中,我们将探讨使用日期时间列提取有用信息的各种特征工程技术。
375 1
|
9月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
542 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
机器学习/深度学习 索引 Python
python之序列
python之序列
224 59

热门文章

最新文章

推荐镜像

更多