0016-Avro序列化&反序列化和Spark读取Avro数据

简介:

温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。

1.简介

本篇文章主要讲如何使用java生成Avro格式数据以及如何通过spark将Avro数据文件转换成DataSet和DataFrame进行操作。

1.1Apache Arvo是什么?

Apache Avro 是一个数据序列化系统,Avro提供Java、Python、C、C++、C#等语言API接口,下面我们通过java的一个实例来说明Avro序列化和反序列化数据。

  • 支持丰富的数据结构
  • 快速可压缩的二进制数据格式
  • 存储持久数据的文件容器
  • 远程过程调用(RPC)
  • 动态语言的简单集成

2.Avro数据生成

2.1定义Schema文件

1.下载avro-tools-1.8.1.jar

Avro官网:http://avro.apache.org/ Avro版本:1.8.1 下载Avro相关jar包:avro-tools-1.8.1.jar 该jar包主要用户将定义好的schema文件生成对应的java文件

2.定义一个schema文件,命名为CustomerAdress.avsc

{

"namespace":"com.peach.arvo",

"type": "record",

"name": "CustomerAddress",

"fields": [

{"name":"ca_address_sk","type":"long"},

{"name":"ca_address_id","type":"string"},

{"name":"ca_street_number","type":"string"},

{"name":"ca_street_name","type":"string"},

{"name":"ca_street_type","type":"string"},

{"name":"ca_suite_number","type":"string"},

{"name":"ca_city","type":"string"},

{"name":"ca_county","type":"string"},

{"name":"ca_state","type":"string"},

{"name":"ca_zip","type":"string"},

{"name":"ca_country","type":"string"},

{"name":"ca_gmt_offset","type":"double"},

{"name":"ca_location_type","type":"string"}

]

}

Schema说明:

  • namespace:在生成java文件时import包路径
  • type:omplex types(record, enum,array, map, union, and fixed)
  • name:生成java文件时的类名
  • fileds:schema中定义的字段及类型

3.生成java代码文件

使用第1步下载的avro-tools-1.8.1.jar包,生成java code

java -jar avro-tools-1.8.1.jar compile schema CustomerAddress.avsc .

末尾的"."代表java code 生成在当前目录,命令执行成功后显示:

2.2使用Java生成Avro文件

1.使用Maven创建java工程

在pom.xml文件中添加如下依赖

org.apache.avro

avro

1.8.1

2.新建java类GenerateDataApp,代码如下

动态生成avro文件,通过将数据封装为GenericRecord对象,动态的写入avro文件,以下代码片段:

3. Spark读Avro文件

1.使用Maven创建一个scala工程

在pom.xml文件中增加如下依赖

2.Scala事例代码片段

3.Spark运行结果

源码地址:

https://github.com/javaxsky/avrotospark

醉酒鞭名马,少年多浮夸! 岭南浣溪沙,呕吐酒肆下!挚友不肯放,数据玩的花!
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。

相关文章
|
2月前
|
存储 安全 IDE
说一说序列化与反序列化中存在的问题
本文详细解析了Java中的序列化机制,包括序列化的概念、实现方式及应用场景。通过Student类的实例演示了对象的序列化与反序列化过程,并分析了`Serializable`接口的作用以及`serialVersionUID`的重要意义。此外,文章还探讨了如何通过自定义`readObject()`方法增强序列化的安全性,以及解决可序列化单例模式中可能产生的多实例问题。最后提供了代码示例和运行结果,帮助读者深入理解序列化的原理与实践技巧。
|
2月前
|
JSON JavaScript 前端开发
Go语言JSON 序列化与反序列化 -《Go语言实战指南》
本文介绍了 Go 语言中使用 `encoding/json` 包实现 JSON 与数据结构之间的转换。内容涵盖序列化(`Marshal`)和反序列化(`Unmarshal`),包括基本示例、结构体字段标签的使用、控制字段行为的标签(如 `omitempty` 和 `-`)、处理 `map` 和切片、嵌套结构体序列化、反序列化未知结构(使用 `map[string]interface{}`)以及 JSON 数组的解析。最后通过表格总结了序列化与反序列化的方法及类型要求,帮助开发者快速掌握 JSON 数据处理技巧。
|
9月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
105 3
|
8月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
215 1
|
8月前
|
存储 安全 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第22天】在Java的世界里,对象序列化和反序列化是数据持久化和网络传输的关键技术。本文将带你了解如何在Java中实现对象的序列化与反序列化,并探讨其背后的原理。通过实际代码示例,我们将一步步展示如何将复杂数据结构转换为字节流,以及如何将这些字节流还原为Java对象。文章还将讨论在使用序列化时应注意的安全性问题,以确保你的应用程序既高效又安全。
|
8月前
|
XML JSON Kubernetes
什么是 YAML?:一种简洁高效的数据序列化格式
什么是 YAML?:一种简洁高效的数据序列化格式
1038 0
|
9月前
|
存储 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第9天】在Java的世界里,对象序列化是连接数据持久化与网络通信的桥梁。本文将深入探讨Java对象序列化的机制、实践方法及反序列化过程,通过代码示例揭示其背后的原理。从基础概念到高级应用,我们将一步步揭开序列化技术的神秘面纱,让读者能够掌握这一强大工具,以应对数据存储和传输的挑战。
|
9月前
|
存储 安全 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第3天】在Java编程的世界里,对象序列化与反序列化是实现数据持久化和网络传输的关键技术。本文将深入探讨Java序列化的原理、应用场景以及如何通过代码示例实现对象的序列化与反序列化过程。从基础概念到实践操作,我们将一步步揭示这一技术的魅力所在。
|
10月前
|
JSON 安全 编译器
扩展类实例的序列化和反序列化
扩展类实例的序列化和反序列化
93 1
|
10月前
|
存储 XML JSON
用示例说明序列化和反序列化
用示例说明序列化和反序列化
95 1

热门文章

最新文章