kaldi 源码分析(八) - DNN训练过程

简介: 在 kaldi 训练过程中,DNN 的训练是依赖于 GMM-HMM 模型的,通过 GMM-HMM 模型得到 DNN 声学模型的输出结果(在 get_egs.sh 脚本中可以看到这一过程)。

在 kaldi 训练过程中,DNN 的训练是依赖于 GMM-HMM 模型的,通过 GMM-HMM 模型得到 DNN 声学模型的输出结果(在 get_egs.sh 脚本中可以看到这一过程)。因此训练一个好的 GMM-HMM 模型是 kaldi 语音识别的关键。

为了理解 DNN 训练的过程,这里以 aishell 为例,从 run.sh 进行解析

#!/bin/bash

# Copyright 2017 Beijing Shell Shell Tech. Co. Ltd. (Authors: Hui Bu)
#           2017 Jiayu Du
#           2017 Xingyu Na
#           2017 Bengu Wu
#           2017 Hao Zheng
# Apache 2.0

# This is a shell script, but it's recommended that you run the commands one by
# one by copying and pasting into the shell.
# Caution: some of the graph creation steps use quite a bit of memory, so you
# should run this on a machine that has sufficient memory.

data=/export/a05/xna/data
data_url=www.openslr.org/resources/33

. ./cmd.sh

local/download_and_untar.sh $data $data_url data_aishell || exit 1;
local/download_and_untar.sh $data $data_url resource_aishell || exit 1;

# Lexicon Preparation,
local/aishell_prepare_dict.sh $data/resource_aishell || exit 1;

# Data Preparation,
local/aishell_data_prep.sh $data/data_aishell/wav $data/data_aishell/transcript || exit 1;

# Phone Sets, questions, L compilation
utils/prepare_lang.sh --position-dependent-phones false data/local/dict \
    "<SPOKEN_NOISE>" data/local/lang data/lang || exit 1;

# LM training
local/aishell_train_lms.sh || exit 1;

# G compilation, check LG composition
utils/format_lm.sh data/lang data/local/lm/3gram-mincount/lm_unpruned.gz \
    data/local/dict/lexicon.txt data/lang_test || exit 1;

# Now make MFCC plus pitch features.
# mfccdir should be some place with a largish disk where you
# want to store MFCC features.
mfccdir=mfcc
for x in train dev test; do
  steps/make_mfcc_pitch.sh --cmd "$train_cmd" --nj 10 data/$x exp/make_mfcc/$x $mfccdir || exit 1;
  steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x $mfccdir || exit 1;
  utils/fix_data_dir.sh data/$x || exit 1;
done

# 训练单音HMM模型
steps/train_mono.sh --cmd "$train_cmd" --nj 10 \
  data/train data/lang exp/mono || exit 1;

# Monophone decoding
utils/mkgraph.sh data/lang_test exp/mono exp/mono/graph || exit 1;
steps/decode.sh --cmd "$decode_cmd" --config conf/decode.config --nj 10 \
  exp/mono/graph data/dev exp/mono/decode_dev
steps/decode.sh --cmd "$decode_cmd" --config conf/decode.config --nj 10 \
  exp/mono/graph data/test exp/mono/decode_test

# Get alignments from monophone system.
steps/align_si.sh --cmd "$train_cmd" --nj 10 \
  data/train data/lang exp/mono exp/mono_ali || exit 1;

# 训练与上下文相关的三音 HMM 模型
# train tri1 [first triphone pass]
steps/train_deltas.sh --cmd "$train_cmd" \
 2500 20000 data/train data/lang exp/mono_ali exp/tri1 || exit 1;

# decode tri1
utils/mkgraph.sh data/lang_test exp/tri1 exp/tri1/graph || exit 1;
steps/decode.sh --cmd "$decode_cmd" --config conf/decode.config --nj 10 \
  exp/tri1/graph data/dev exp/tri1/decode_dev
steps/decode.sh --cmd "$decode_cmd" --config conf/decode.config --nj 10 \
  exp/tri1/graph data/test exp/tri1/decode_test

# align tri1
steps/align_si.sh --cmd "$train_cmd" --nj 10 \
  data/train data/lang exp/tri1 exp/tri1_ali || exit 1;

# train tri2 [delta+delta-deltas]
steps/train_deltas.sh --cmd "$train_cmd" \
 2500 20000 data/train data/lang exp/tri1_ali exp/tri2 || exit 1;

# decode tri2
utils/mkgraph.sh data/lang_test exp/tri2 exp/tri2/graph
steps/decode.sh --cmd "$decode_cmd" --config conf/decode.config --nj 10 \
  exp/tri2/graph data/dev exp/tri2/decode_dev
steps/decode.sh --cmd "$decode_cmd" --config conf/decode.config --nj 10 \
  exp/tri2/graph data/test exp/tri2/decode_test

# train and decode tri2b [LDA+MLLT]
steps/align_si.sh --cmd "$train_cmd" --nj 10 \
  data/train data/lang exp/tri2 exp/tri2_ali || exit 1;

# 进行线性判别分析(LDA)和最大似然线性转换(MLLT)
# Train tri3a, which is LDA+MLLT,
steps/train_lda_mllt.sh --cmd "$train_cmd" \
 2500 20000 data/train data/lang exp/tri2_ali exp/tri3a || exit 1;

utils/mkgraph.sh data/lang_test exp/tri3a exp/tri3a/graph || exit 1;
steps/decode.sh --cmd "$decode_cmd" --nj 10 --config conf/decode.config \
  exp/tri3a/graph data/dev exp/tri3a/decode_dev
steps/decode.sh --cmd "$decode_cmd" --nj 10 --config conf/decode.config \
  exp/tri3a/graph data/test exp/tri3a/decode_test

# From now, we start building a more serious system (with SAT), and we'll
# do the alignment with fMLLR.

steps/align_fmllr.sh --cmd "$train_cmd" --nj 10 \
  data/train data/lang exp/tri3a exp/tri3a_ali || exit 1;

# 训练发音人自适应,基于特征空间最大似然线性回归
steps/train_sat.sh --cmd "$train_cmd" \
  2500 20000 data/train data/lang exp/tri3a_ali exp/tri4a || exit 1;

utils/mkgraph.sh data/lang_test exp/tri4a exp/tri4a/graph
steps/decode_fmllr.sh --cmd "$decode_cmd" --nj 10 --config conf/decode.config \
  exp/tri4a/graph data/dev exp/tri4a/decode_dev
steps/decode_fmllr.sh --cmd "$decode_cmd" --nj 10 --config conf/decode.config \
  exp/tri4a/graph data/test exp/tri4a/decode_test

steps/align_fmllr.sh  --cmd "$train_cmd" --nj 10 \
  data/train data/lang exp/tri4a exp/tri4a_ali

# Building a larger SAT system.

steps/train_sat.sh --cmd "$train_cmd" \
  3500 100000 data/train data/lang exp/tri4a_ali exp/tri5a || exit 1;

utils/mkgraph.sh data/lang_test exp/tri5a exp/tri5a/graph || exit 1;
steps/decode_fmllr.sh --cmd "$decode_cmd" --nj 10 --config conf/decode.config \
   exp/tri5a/graph data/dev exp/tri5a/decode_dev || exit 1;
steps/decode_fmllr.sh --cmd "$decode_cmd" --nj 10 --config conf/decode.config \
   exp/tri5a/graph data/test exp/tri5a/decode_test || exit 1;

# 将特征向量进行gmm-est-fmllr并gmm-align-compiled对齐操作
steps/align_fmllr.sh --cmd "$train_cmd" --nj 10 \
  data/train data/lang exp/tri5a exp/tri5a_ali || exit 1;

# nnet3
local/nnet3/run_tdnn.sh

# chain
local/chain/run_tdnn.sh

# getting results (see RESULTS file)
for x in exp/*/decode_test; do [ -d $x ] && grep WER $x/cer_* | utils/best_wer.sh; done 2>/dev/null

exit 0;

从上述的注释来看, GMM-HMM 训练了 5 次,得到一个相对比较不错的模型,然后训练 nnet3 模型以及 chain 模型,最后测试精度。

在 local/nnet3/run_tdnn.sh 脚本中

#!/bin/bash

# This script is based on swbd/s5c/local/nnet3/run_tdnn.sh

# this is the standard "tdnn" system, built in nnet3; it's what we use to
# call multi-splice.

# At this script level we don't support not running on GPU, as it would be painfully slow.
# If you want to run without GPU you'd have to call train_tdnn.sh with --gpu false,
# --num-threads 16 and --minibatch-size 128.
set -e

stage=0
train_stage=-10
affix=
common_egs_dir=

# training options
initial_effective_lrate=0.0015
final_effective_lrate=0.00015
num_epochs=4
num_jobs_initial=2
num_jobs_final=12
remove_egs=true

# feature options
use_ivectors=true

# End configuration section.

. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh

if ! cuda-compiled; then
  cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

dir=exp/nnet3/tdnn_sp${affix:+_$affix}
# 这里设置GMM输入参数目录
gmm_dir=exp/tri5a
train_set=train_sp
# 对齐后的特征集合目录
ali_dir=${gmm_dir}_sp_ali
graph_dir=$gmm_dir/graph

local/nnet3/run_ivector_common.sh --stage $stage || exit 1;

if [ $stage -le 7 ]; then
  echo "$0: creating neural net configs";

  num_targets=$(tree-info $ali_dir/tree |grep num-pdfs|awk '{print $2}')

# kaldi DNN 网络配置
  mkdir -p $dir/configs
  cat <<EOF > $dir/configs/network.xconfig
  input dim=100 name=ivector
  input dim=43 name=input

  # please note that it is important to have input layer with the name=input
  # as the layer immediately preceding the fixed-affine-layer to enable
  # the use of short notation for the descriptor
  fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat

  # the first splicing is moved before the lda layer, so no splicing here
  relu-batchnorm-layer name=tdnn1 dim=850
  relu-batchnorm-layer name=tdnn2 dim=850 input=Append(-1,0,2)
  relu-batchnorm-layer name=tdnn3 dim=850 input=Append(-3,0,3)
  relu-batchnorm-layer name=tdnn4 dim=850 input=Append(-7,0,2)
  relu-batchnorm-layer name=tdnn5 dim=850 input=Append(-3,0,3)
  relu-batchnorm-layer name=tdnn6 dim=850
  output-layer name=output input=tdnn6 dim=$num_targets max-change=1.5
EOF
# 将 网络配置转换为 nnet3 网络配置文件
  steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi

if [ $stage -le 8 ]; then
  if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
    utils/create_split_dir.pl \
     /export/b0{5,6,7,8}/$USER/kaldi-data/egs/aishell-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
  fi

# 执行  train_dnn.py 来对 feats 内容进行训练
  steps/nnet3/train_dnn.py --stage=$train_stage \
    --cmd="$decode_cmd" \
    --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \
    --feat.cmvn-opts="--norm-means=false --norm-vars=false" \
    --trainer.num-epochs $num_epochs \
    --trainer.optimization.num-jobs-initial $num_jobs_initial \
    --trainer.optimization.num-jobs-final $num_jobs_final \
    --trainer.optimization.initial-effective-lrate $initial_effective_lrate \
    --trainer.optimization.final-effective-lrate $final_effective_lrate \
    --egs.dir "$common_egs_dir" \
    --cleanup.remove-egs $remove_egs \
    --cleanup.preserve-model-interval 500 \
    --use-gpu true \
    --feat-dir=data/${train_set}_hires \
    --ali-dir $ali_dir \
    --lang data/lang \
    --reporting.email="$reporting_email" \
    --dir=$dir  || exit 1;
fi

if [ $stage -le 9 ]; then
  # this version of the decoding treats each utterance separately
  # without carrying forward speaker information.
  for decode_set in dev test; do
    num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
    decode_dir=${dir}/decode_$decode_set
    steps/nnet3/decode.sh --nj $num_jobs --cmd "$decode_cmd" \
       --online-ivector-dir exp/nnet3/ivectors_${decode_set} \
       $graph_dir data/${decode_set}_hires $decode_dir || exit 1;
  done
fi

wait;
exit 0;

这里进入到 train_tdnn.py 中可以看到如下内容:

# 训练主函数
def train(args, run_opts):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Copy phones.txt from ali-dir to dir. Later, steps/nnet3/decode.sh will
    # use it to check compatibility between training and decoding phone-sets.
    shutil.copy('{0}/phones.txt'.format(args.ali_dir), args.dir)

# 参数数据准备
    # Set some variables.
    # num_leaves = common_lib.get_number_of_leaves_from_tree(args.ali_dir)
    num_jobs = common_lib.get_number_of_jobs(args.ali_dir)
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
    ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)

    # split the training data into parts for individual jobs
    # we will use the same number of jobs as that used for alignment
    common_lib.execute_command("utils/split_data.sh {0} {1}".format(
        args.feat_dir, num_jobs))
    shutil.copy('{0}/tree'.format(args.ali_dir), args.dir)

    with open('{0}/num_jobs'.format(args.dir), 'w') as f:
        f.write(str(num_jobs))

    if args.input_model is None:
        config_dir = '{0}/configs'.format(args.dir)
        var_file = '{0}/vars'.format(config_dir)

        variables = common_train_lib.parse_generic_config_vars_file(var_file)
    else:
        # If args.input_model is specified, the model left and right contexts
        # are computed using input_model.
        variables = common_train_lib.get_input_model_info(args.input_model)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = model_left_context
    right_context = model_right_context

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.

# 网络初始化
    if (args.stage <= -5) and os.path.exists(args.dir+"/configs/init.config") and \
       (args.input_model is None):
        logger.info("Initializing a basic network for estimating "
                    "preconditioning matrix")
        common_lib.execute_command(
            """{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    default_egs_dir = '{0}/egs'.format(args.dir)
    if (args.stage <= -4) and args.egs_dir is None:
        logger.info("Generating egs")

        if args.feat_dir is None:
            raise Exception("--feat-dir option is required if you don't supply --egs-dir")

# 调用 get_egs.sh 进行构建样本数据
        train_lib.acoustic_model.generate_egs(
            data=args.feat_dir, alidir=args.ali_dir, egs_dir=default_egs_dir,
            left_context=left_context, right_context=right_context,
            run_opts=run_opts,
            frames_per_eg_str=str(args.frames_per_eg),
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            samples_per_iter=args.samples_per_iter,
            stage=args.egs_stage)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

# 构建验证样本集合
    [egs_left_context, egs_right_context,
     frames_per_eg_str, num_archives] = (
         common_train_lib.verify_egs_dir(egs_dir, feat_dim,
                                         ivector_dim, ivector_id,
                                         left_context, right_context))
    assert str(args.frames_per_eg) == frames_per_eg_str

    if args.num_jobs_final > num_archives:
        raise Exception('num_jobs_final cannot exceed the number of archives '
                        'in the egs directory')

    # copy the properties of the egs to dir for
    # use during decoding
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if args.stage <= -3 and os.path.exists(args.dir+"/configs/init.config") and (args.input_model is None):
        logger.info('Computing the preconditioning matrix for input features')

        train_lib.common.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if args.stage <= -2 and (args.input_model is None):
        logger.info("Computing initial vector for FixedScaleComponent before"
                    " softmax, using priors^{prior_scale} and rescaling to"
                    " average 1".format(
                        prior_scale=args.presoftmax_prior_scale_power))

        common_train_lib.compute_presoftmax_prior_scale(
            args.dir, args.ali_dir, num_jobs, run_opts,
            presoftmax_prior_scale_power=args.presoftmax_prior_scale_power)

    if args.stage <= -1:
        logger.info("Preparing the initial acoustic model.")
        train_lib.acoustic_model.prepare_initial_acoustic_model(
            args.dir, args.ali_dir, run_opts,
            input_model=args.input_model)

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_expanded = num_archives * args.frames_per_eg
    num_archives_to_process = int(args.num_epochs * num_archives_expanded)
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2)
                 / (args.num_jobs_initial + args.num_jobs_final))

    # If do_final_combination is True, compute the set of models_to_combine.
    # Otherwise, models_to_combine will be none.
    if args.do_final_combination:
        models_to_combine = common_train_lib.get_model_combine_iters(
            num_iters, args.num_epochs,
            num_archives_expanded, args.max_models_combine,
            args.num_jobs_final)
    else:
        models_to_combine = None

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial
                               + (args.num_jobs_final - args.num_jobs_initial)
                               * float(iter) / num_iters)

        if args.stage <= iter:
# 获取 learning_rate
            lrate = common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                       num_iters,
                                                       num_archives_processed,
                                                       num_archives_to_process,
                                                       args.initial_effective_lrate,
                                                       args.final_effective_lrate)
            shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
            if shrinkage_value <= 0.5:
                raise Exception("proportional-shrink={0} is too large, it gives "
                                "shrink-value={1}".format(args.proportional_shrink,
                                                          shrinkage_value))

            percent = num_archives_processed * 100.0 / num_archives_to_process
            epoch = (num_archives_processed * args.num_epochs
                     / num_archives_to_process)
            shrink_info_str = ''
            if shrinkage_value != 1.0:
                shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
            logger.info("Iter: {0}/{1}    "
                        "Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete)    "
                        "lr: {5:0.6f}    {6}".format(iter, num_iters - 1,
                                                     epoch, args.num_epochs,
                                                     percent,
                                                     lrate, shrink_info_str))

# 开始一次训练
            train_lib.common.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=lrate,
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                train_opts=' '.join(args.train_opts),
                minibatch_size_str=args.minibatch_size,
                frames_per_eg=args.frames_per_eg,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shrinkage_value=shrinkage_value,
                shuffle_buffer_size=args.shuffle_buffer_size,
                run_opts=run_opts)

            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_acc_logprob_report(args.dir))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        if args.do_final_combination:
            logger.info("Doing final combination to produce final.mdl")
            train_lib.common.combine_models(
                dir=args.dir, num_iters=num_iters,
                models_to_combine=models_to_combine,
                egs_dir=egs_dir,
                minibatch_size_str=args.minibatch_size, run_opts=run_opts,
                max_objective_evaluations=args.max_objective_evaluations)

    if args.stage <= num_iters + 1:
        logger.info("Getting average posterior for purposes of "
                    "adjusting the priors.")

        # If args.do_final_combination is true, we will use the combined model.
        # Otherwise, we will use the last_numbered model.
        real_iter = 'combined' if args.do_final_combination else num_iters
        avg_post_vec_file = train_lib.common.compute_average_posterior(
            dir=args.dir, iter=real_iter,
            egs_dir=egs_dir, num_archives=num_archives,
            prior_subset_size=args.prior_subset_size, run_opts=run_opts)

        logger.info("Re-adjusting priors based on computed posteriors")
        combined_or_last_numbered_model = "{dir}/{iter}.mdl".format(dir=args.dir,
                iter=real_iter)
        final_model = "{dir}/final.mdl".format(dir=args.dir)
        train_lib.common.adjust_am_priors(args.dir, combined_or_last_numbered_model,
                avg_post_vec_file, final_model, run_opts)


    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

# 清除网络数据
        common_train_lib.clean_nnet_dir(
            nnet_dir=args.dir, num_iters=num_iters, egs_dir=egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir)
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.execute_command("steps/info/nnet3_dir_info.pl "
                               "{0}".format(args.dir))

在 get_egs.sh 脚本中,主要的内容如下所示:

# 获取 pdfs 数量
num_pdfs=$(tree-info --print-args=false $alidir/tree | grep num-pdfs | awk '{print $2}')
if [ $stage -le 3 ]; then
  echo "$0: Getting validation and training subset examples."
  rm $dir/.error 2>/dev/null
  echo "$0: ... extracting validation and training-subset alignments."

# 分割样本数据
  # do the filtering just once, as ali.scp may be long.
  utils/filter_scp.pl <(cat $dir/valid_uttlist $dir/train_subset_uttlist) \
    <$dir/ali.scp >$dir/ali_special.scp

# 通过 ali-to-pdf 以 GMM-HMM 输出模型为方法,将 alignments 特征转换为 pdf 并将其输入到 nnet3-get-egs 中与与特征进行合并为 NnetExample 对象并存放在文件中
  $cmd $dir/log/create_valid_subset.log \
    utils/filter_scp.pl $dir/valid_uttlist $dir/ali_special.scp \| \
    ali-to-pdf $alidir/final.mdl scp:- ark:- \| \
    ali-to-post ark:- ark:- \| \
    nnet3-get-egs --num-pdfs=$num_pdfs --frame-subsampling-factor=$frame_subsampling_factor \
      $ivector_opts $egs_opts "$valid_feats" \
      ark,s,cs:- "ark:$dir/valid_all.egs" || touch $dir/.error &
  $cmd $dir/log/create_train_subset.log \
    utils/filter_scp.pl $dir/train_subset_uttlist $dir/ali_special.scp \| \
    ali-to-pdf $alidir/final.mdl scp:- ark:- \| \
    ali-to-post ark:- ark:- \| \
    nnet3-get-egs --num-pdfs=$num_pdfs --frame-subsampling-factor=$frame_subsampling_factor \
      $ivector_opts $egs_opts "$train_subset_feats" \
      ark,s,cs:- "ark:$dir/train_subset_all.egs" || touch $dir/.error &
  wait;
  [ -f $dir/.error ] && echo "Error detected while creating train/valid egs" && exit 1
  echo "... Getting subsets of validation examples for diagnostics and combination."
  if $generate_egs_scp; then
    valid_diagnostic_output="ark,scp:$dir/valid_diagnostic.egs,$dir/valid_diagnostic.scp"
    train_diagnostic_output="ark,scp:$dir/train_diagnostic.egs,$dir/train_diagnostic.scp"
  else
    valid_diagnostic_output="ark:$dir/valid_diagnostic.egs"
    train_diagnostic_output="ark:$dir/train_diagnostic.egs"
  fi
  $cmd $dir/log/create_valid_subset_combine.log \
    nnet3-subset-egs --n=$[$num_valid_frames_combine/$frames_per_eg_principal] ark:$dir/valid_all.egs \
      ark:$dir/valid_combine.egs || touch $dir/.error &
  $cmd $dir/log/create_valid_subset_diagnostic.log \
    nnet3-subset-egs --n=$[$num_frames_diagnostic/$frames_per_eg_principal] ark:$dir/valid_all.egs \
    $valid_diagnostic_output || touch $dir/.error &

# 分割样本类型
  $cmd $dir/log/create_train_subset_combine.log \
    nnet3-subset-egs --n=$[$num_train_frames_combine/$frames_per_eg_principal] ark:$dir/train_subset_all.egs \
      ark:$dir/train_combine.egs || touch $dir/.error &
  $cmd $dir/log/create_train_subset_diagnostic.log \
    nnet3-subset-egs --n=$[$num_frames_diagnostic/$frames_per_eg_principal] ark:$dir/train_subset_all.egs \
    $train_diagnostic_output || touch $dir/.error &
  wait
  sleep 5  # wait for file system to sync.
  cat $dir/valid_combine.egs $dir/train_combine.egs > $dir/combine.egs
  if $generate_egs_scp; then
    cat $dir/valid_combine.egs $dir/train_combine.egs  | \
    nnet3-copy-egs ark:- ark,scp:$dir/combine.egs,$dir/combine.scp
    rm $dir/{train,valid}_combine.scp
  else
    cat $dir/valid_combine.egs $dir/train_combine.egs > $dir/combine.egs
  fi
  for f in $dir/{combine,train_diagnostic,valid_diagnostic}.egs; do
    [ ! -s $f ] && echo "No examples in file $f" && exit 1;
  done
  rm $dir/valid_all.egs $dir/train_subset_all.egs $dir/{train,valid}_combine.egs
fi

通过查看 nnet3-get-egs.cc 文件, 其内容如下:

    // 'input_frames' now stores the relevant rows (maybe with padding) from the
    // original Matrix or (more likely) CompressedMatrix.  If a CompressedMatrix,
    // it does this without un-compressing and re-compressing, so there is no loss
    // of accuracy.

    NnetExample eg;
# 加入 input 输入内容
    // call the regular input "input".
    eg.io.push_back(NnetIo("input", -chunk.left_context, input_frames));

    if (ivector_feats != NULL) {
      // if applicable, add the iVector feature.
      // choose iVector from a random frame in the chunk
      int32 ivector_frame = RandInt(start_frame,
                                    start_frame + num_input_frames - 1),
          ivector_frame_subsampled = ivector_frame / ivector_period;
      if (ivector_frame_subsampled < 0)
        ivector_frame_subsampled = 0;
      if (ivector_frame_subsampled >= ivector_feats->NumRows())
        ivector_frame_subsampled = ivector_feats->NumRows() - 1;
      Matrix<BaseFloat> ivector(1, ivector_feats->NumCols());
      ivector.Row(0).CopyFromVec(ivector_feats->Row(ivector_frame_subsampled));
# 添加 ivector 声学特征向量
      eg.io.push_back(NnetIo("ivector", 0, ivector));
    }

    // Note: chunk.first_frame and chunk.num_frames will both be
    // multiples of frame_subsampling_factor.
    int32 start_frame_subsampled = chunk.first_frame / frame_subsampling_factor,
        num_frames_subsampled = chunk.num_frames / frame_subsampling_factor;

    Posterior labels(num_frames_subsampled);

    // TODO: it may be that using these weights is not actually helpful (with
    // chain training, it was not), and that setting them all to 1 is better.
    // We could add a boolean option to this program to control that; but I
    // don't want to add such an option if experiments show that it is not
    // helpful.
    for (int32 i = 0; i < num_frames_subsampled; i++) {
      int32 t = i + start_frame_subsampled;
      if (t < pdf_post.size())
        labels[i] = pdf_post[t];
      for (std::vector<std::pair<int32, BaseFloat> >::iterator
               iter = labels[i].begin(); iter != labels[i].end(); ++iter)
        iter->second *= chunk.output_weights[i];
    }
# 添加 output 输出结果
    eg.io.push_back(NnetIo("output", num_pdfs, 0, labels, frame_subsampling_factor));

    if (compress)
      eg.Compress();

参考

Kaldi学习之数据准备详细解释说明
Kaldi学习笔记
Kaldi-Timit脚本

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
AI顶会ICLR 2022 | WPipe 蚂蚁集团大规模 DNN 训练的流水线并行技术
AI顶会ICLR 2022 | WPipe 蚂蚁集团大规模 DNN 训练的流水线并行技术
798 0
AI顶会ICLR 2022 | WPipe 蚂蚁集团大规模 DNN 训练的流水线并行技术
|
机器学习/深度学习 算法
DL之DNN:基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)
DL之DNN:基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)
|
机器学习/深度学习 人工智能 算法
不确定性助益学习准确率,GPU训练预测性DNN误差更少、效果更好
有学者发现在 GPU 而不是 CPU 上训练的机器学习系统在训练过程中可能包含更少的误差,并产生更好的结果。这一发现与一般的理解相矛盾,即 GPU 只具有加速功能,而不是使训练结果更好。
不确定性助益学习准确率,GPU训练预测性DNN误差更少、效果更好
|
机器学习/深度学习
DL之DNN:自定义MultiLayerNet【6*100+ReLU,SGD】对MNIST数据集训练进而比较【多个超参数组合最优化】性能
DL之DNN:自定义MultiLayerNet【6*100+ReLU,SGD】对MNIST数据集训练进而比较【多个超参数组合最优化】性能
DL之DNN:自定义MultiLayerNet【6*100+ReLU,SGD】对MNIST数据集训练进而比较【多个超参数组合最优化】性能
|
机器学习/深度学习
DL之DNN:利用MultiLayerNetExtend模型【6*100+ReLU+SGD,dropout】对Mnist数据集训练来抑制过拟合
DL之DNN:利用MultiLayerNetExtend模型【6*100+ReLU+SGD,dropout】对Mnist数据集训练来抑制过拟合
DL之DNN:利用MultiLayerNetExtend模型【6*100+ReLU+SGD,dropout】对Mnist数据集训练来抑制过拟合
|
机器学习/深度学习
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD,weight_decay】对Mnist数据集训练来抑制过拟合
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD,weight_decay】对Mnist数据集训练来抑制过拟合
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD,weight_decay】对Mnist数据集训练来抑制过拟合
|
机器学习/深度学习
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD】对Mnist数据集训练来理解过拟合现象
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD】对Mnist数据集训练来理解过拟合现象
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD】对Mnist数据集训练来理解过拟合现象
|
机器学习/深度学习 算法
DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程
DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程
DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程
|
机器学习/深度学习
DL之DNN优化技术:自定义MultiLayerNet【5*100+ReLU】对MNIST数据集训练进而比较三种权重初始值(Xavier参数初始化、He参数初始化)性能差异
DL之DNN优化技术:自定义MultiLayerNet【5*100+ReLU】对MNIST数据集训练进而比较三种权重初始值(Xavier参数初始化、He参数初始化)性能差异
DL之DNN优化技术:自定义MultiLayerNet【5*100+ReLU】对MNIST数据集训练进而比较三种权重初始值(Xavier参数初始化、He参数初始化)性能差异
|
机器学习/深度学习 算法 Python
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能

热门文章

最新文章