符合语言习惯的 Python 优雅编程技巧

简介:

Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。要写出 Pythonic(优雅的、地道的、整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,下面列举一些常见的Pythonic写法。

0. 程序必须先让人读懂,然后才能让计算机执行。

“Programs must be written for people to read, and only incidentally for machines to execute.”

1. 交换赋值

##不推荐
temp = a
a = b
b = a

##推荐
a, b = b, a # 先生成一个元组(tuple)对象,然后unpack

2. Unpacking

##不推荐
l = ['David', 'Pythonista', '+1-514-555-1234']
first_name = l[0]
last_name = l[1]
phone_number = l[2]

##推荐
l = ['David', 'Pythonista', '+1-514-555-1234']
first_name, last_name, phone_number = l
# Python 3 Only
first, *middle, last = another_list

3. 使用操作符in

##不推荐
if fruit == "apple" or fruit == "orange" or fruit == "berry":
# 多次判断

##推荐
if fruit in ["apple", "orange", "berry"]:
# 使用 in 更加简洁

4. 字符串操作

##不推荐
colors = ['red', 'blue', 'green', 'yellow']

result = ''
for s in colors:
result += s # 每次赋值都丢弃以前的字符串对象, 生成一个新对象

##推荐
colors = ['red', 'blue', 'green', 'yellow']
result = ''.join(colors) # 没有额外的内存分配

5. 字典键值列表

##不推荐
for key in my_dict.keys():
# my_dict[key] ...

##推荐
for key in my_dict:
# my_dict[key] ...

# 只有当循环中需要更改key值的情况下,我们需要使用 my_dict.keys()
# 生成静态的键值列表。

6. 字典键值判断

##不推荐
if my_dict.has_key(key):
# ...do something with d[key]

##推荐
if key in my_dict:
# ...do something with d[key]

7. 字典 get 和 setdefault 方法

##不推荐
navs = {}
for (portfolio, equity, position) in data:
if portfolio not in navs:
navs[portfolio] = 0
navs[portfolio] += position * prices[equity]
##推荐
navs = {}
for (portfolio, equity, position) in data:
# 使用 get 方法
navs[portfolio] = navs.get(portfolio, 0) + position * prices[equity]
# 或者使用 setdefault 方法
navs.setdefault(portfolio, 0)
navs[portfolio] += position * prices[equity]

8. 判断真伪

##不推荐
if x == True:
# ....
if len(items) != 0:
# ...
if items != []:
# ...

##推荐
if x:
# ....
if items:
# ...

9. 遍历列表以及索引

##不推荐
items = 'zero one two three'.split()
# method 1
i = 0
for item in items:
print i, item
i += 1
# method 2
for i in range(len(items)):
print i, items[i]

##推荐
items = 'zero one two three'.split()
for i, item in enumerate(items):
print i, item

10. 列表推导

##不推荐
new_list = []
for item in a_list:
if condition(item):
new_list.append(fn(item))

##推荐
new_list = [fn(item) for item in a_list if condition(item)]

11. 列表推导-嵌套

##不推荐
for sub_list in nested_list:
if list_condition(sub_list):
for item in sub_list:
if item_condition(item):
# do something...
##推荐
gen = (item for sl in nested_list if list_condition(sl) \
for item in sl if item_condition(item))
for item in gen:
# do something...

12. 循环嵌套

##不推荐
for x in x_list:
for y in y_list:
for z in z_list:
# do something for x & y

##推荐
from itertools import product
for x, y, z in product(x_list, y_list, z_list):
# do something for x, y, z

13. 尽量使用生成器代替列表

##不推荐
def my_range(n):
i = 0
result = []
while i < n:
result.append(fn(i))
i += 1
return result # 返回列表

##推荐
def my_range(n):
i = 0
result = []
while i < n:
yield fn(i) # 使用生成器代替列表
i += 1
*尽量用生成器代替列表,除非必须用到列表特有的函数。

14. 中间结果尽量使用imap/ifilter代替map/filter

##不推荐
reduce(rf, filter(ff, map(mf, a_list)))

##推荐
from itertools import ifilter, imap
reduce(rf, ifilter(ff, imap(mf, a_list)))
*lazy evaluation 会带来更高的内存使用效率,特别是当处理大数据操作的时候。

15. 使用any/all函数

##不推荐
found = False
for item in a_list:
if condition(item):
found = True
break
if found:
# do something if found...

##推荐
if any(condition(item) for item in a_list):
# do something if found...

16. 属性(property)

##不推荐
class Clock(object):
def __init__(self):
self.__hour = 1
def setHour(self, hour):
if 25 > hour > 0: self.__hour = hour
else: raise BadHourException
def getHour(self):
return self.__hour

##推荐
class Clock(object):
def __init__(self):
self.__hour = 1
def __setHour(self, hour):
if 25 > hour > 0: self.__hour = hour
else: raise BadHourException
def __getHour(self):
return self.__hour
hour = property(__getHour, __setHour)

17. 使用 with 处理文件打开

##不推荐
f = open("some_file.txt")
try:
data = f.read()
# 其他文件操作..
finally:
f.close()

##推荐
with open("some_file.txt") as f:
data = f.read()
# 其他文件操作...

18. 使用 with 忽视异常(仅限Python 3)

##不推荐
try:
os.remove("somefile.txt")
except OSError:
pass

##推荐
from contextlib import ignored # Python 3 only

with ignored(OSError):
os.remove("somefile.txt")

19. 使用 with 处理加锁

##不推荐
import threading
lock = threading.Lock()

lock.acquire()
try:
# 互斥操作...
finally:
lock.release()

##推荐
import threading
lock = threading.Lock()

with lock:
# 互斥操作...

20. 参考

1) Idiomatic Python:

http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html

2) PEP 8: Style Guide for Python Code:

http://www.python.org/dev/peps/pep-0008/


原文发布时间为:2018-11-15
本文作者:安生
本文来自云栖社区合作伙伴“ 数据与算法之美”,了解相关信息可以关注“ 数据与算法之美”。
相关文章
|
2天前
|
机器学习/深度学习 人工智能 前端开发
Python中的模块化编程
【6月更文挑战第17天】Python模块化编程与软件架构设计的关键在于拆分任务到独立模块,提高代码的可维护性、可重用性和可扩展性。例如,学生管理系统可分解为录入、查询和删除模块。MVC和MVVM架构模式有助于组织代码,而微服务和函数式编程将在未来发展中扮演重要角色。通过示例代码,读者能学习如何实现这些概念,提升项目开发效率和质量。
148 57
|
9天前
|
测试技术 虚拟化 云计算
GitHub高赞!速通Python编程基础手册,被玩出花了!
随着云时代的来临,Python 语言越来越被程序开发人员喜欢和使用,因为其不仅简单易学,而且还有丰富的第三方程序库和相应完善的管理工具。 从命令行脚本程序到 GUI程序,从图形技术到科学计算,从软件开发到自动化测试,从云计算到虚拟化,所有这些领域都有 Python 的身影。 今天给小伙伴们分享的这份手册采用以任务为导向的编写模式,全面地介绍了 Python 编程基础及其相关知识的应用,讲解了如何利用 Python 的知识解决部分实际问题。
GitHub高赞!速通Python编程基础手册,被玩出花了!
|
13天前
|
Python
Python编程实战:如何将列表组装成一棵树结构
本文介绍了如何在Python中将列表转换为树结构。首先定义`TreeNode`类表示节点,包含值和子节点列表。然后,通过`list_to_tree`函数递归地将列表转为树。此外,还提供了添加和删除节点的方法。文章旨在帮助读者理解和操作树结构,以解决实际编程问题。
Python编程实战:如何将列表组装成一棵树结构
|
6天前
|
开发者 Python
【干货】Python编程惯例
【干货】Python编程惯例
11 1
|
9天前
|
Shell Python
GitHub星标破千Star!Python游戏编程的初学者指南
Python 是一种高级程序设计语言,因其简洁、易读及可扩展性日渐成为程序设计领域备受推崇的语言。 目前的编程书籍大多分为两种类型。第一种,与其说是教编程的书,倒不如说是在教“游戏制作软件”,或教授使用一种呆板的语言,使得编程“简单”到不再是编程。而第二种,它们就像是教数学课一样教编程:所有的原理和概念都以小的应用程序的方式呈现给读者。
|
9天前
|
机器学习/深度学习 存储 自然语言处理
惊艳!老司机熬夜总结的Python高性能编程,高效、稳定、快速!
Python 语言是一种脚本语言,其应用领域非常广泛,包括数据分析、自然语言处理机器学习、科学计算、推荐系统构建等。 能够轻松实现和代码跑得够快之间的取舍却是一个世人皆知且令人惋惜的现象而这个问题其实是可以解决的。 有些人想要让顺序执行的过程跑得更快。有些人需要利用多核架构、集群,或者图形处理单元的优势来解决他们的问题。有些人需要可伸缩系统在保证可靠性的前提下酌情或根据资金多少处理更多或更少的工作。有些人意识到他们的编程技巧,通常是来自其他语言,可能不如别人的自然。
|
10天前
|
索引 Python 安全
【Python内功心法】:深挖内置函数,释放语言潜能
【Python内功心法】:深挖内置函数,释放语言潜能
|
10天前
|
存储 Python 索引
【Python编程挑战】:单链表实现技巧与最佳实践
【Python编程挑战】:单链表实现技巧与最佳实践
|
10天前
|
数据库 云计算 Python
不容错过的经典!Python核心编程(第3版)教你用实例学Python!
在学完任何其他入门类的 Python 图书之后,你可能觉得已经掌握了 Python 而且还觉得学得不错,并为此感到自豪。通过完成大量练习之后,你将会对自己新掌握的 Python 编程技能拥有更多信心。 但是,你可能仍然会有这样的疑问,“现在该怎么办?我能用 Python 编写哪种类型的应用程序呢?”或许你是为了一个相当小众的工作项目而学习使用 Python,你可能会考虑“我还能用 Python 写点其他的吗?”
|
10天前
|
SQL 前端开发 Java
Python GUI编程(Tkinter)
Python GUI编程(Tkinter)