java并发(二):深入分析volatile实现原理

简介: volatile的原理实现可以看这篇文章,真的是从硬件层面上说明了volatile怎样保证可见性下面这个实例,如果没有设置成volatile关键字,那么线程读的isRunning永远都是自己私有内存中的,线程将会一直在while循环...

volatile的原理实现可以看这篇文章,真的是从硬件层面上说明了volatile怎样保证可见性

img_47c75ff4a413a7ad2040f5796bbf0501.png

下面这个实例,如果没有设置成volatile关键字,那么线程读的 isRunning永远都是自己私有内存中的,线程将会一直在while循环中

public class RunThread extends Thread{

    private volatile boolean isRunning = true;
    private void setRunning(boolean isRunning){
        this.isRunning = isRunning;
    }
    
    public void run(){
        System.out.println("进入run方法..");
        int i = 0;
        while(isRunning == true){
            //..
        }
        System.out.println("线程停止");
    }
    
    public static void main(String[] args) throws InterruptedException {
        RunThread rt = new RunThread();
        rt.start();
        Thread.sleep(1000);
        rt.setRunning(false);
        System.out.println("isRunning的值已经被设置了false");
    }
    
    
}
img_3f6e7215fab75d8e4e066ad4e412d485.png
img_0c30a913ffe2754fb3ea1e2e7c7212cd.png

这是展示volatile虽然有可见性,但是没有原子性:


/**
 * volatile关键字不具备synchronized关键字的原子性(同步)
 * @author alienware
 *
 */
public class VolatileNoAtomic extends Thread{
    private static volatile int count = 0;
    
    //这个被注释的代码可以保证结果正确
    //private static  AtomicInteger count = new AtomicInteger(0); 
    
    private static void addCount(){
        for (int i = 0; i < 1000; i++) {
            count++ ;
            
            //这个被注释的代码可以保证结果正确
            //count.incrementAndGet();
        }
        System.out.println(count);
    }
    
    public void run(){
        addCount();
    }
    
    public static void main(String[] args) {
        
        VolatileNoAtomic[] arr = new VolatileNoAtomic[100];
        for (int i = 0; i < 10; i++) {
            arr[i] = new VolatileNoAtomic();
        }
        
        for (int i = 0; i < 10; i++) {
            arr[i].start();
        }
    }
    
}

这是使用atomic,保证原子性的代码:

public class AtomicUse {

    private static AtomicInteger count = new AtomicInteger(0);
    
    //多个addAndGet在一个方法内是非原子性的,需要加synchronized进行修饰,保证4个addAndGet整体原子性
    /**synchronized*/
    public synchronized int multiAdd(){
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            count.addAndGet(1);
            count.addAndGet(2);
            count.addAndGet(3);
            count.addAndGet(4); //+10
            return count.get();
    }
    
    
    public static void main(String[] args) {
        
        final AtomicUse au = new AtomicUse();

        List<Thread> ts = new ArrayList<Thread>();
        for (int i = 0; i < 100; i++) {
            ts.add(new Thread(new Runnable() {
                @Override
                public void run() {
                    System.out.println(au.multiAdd());
                }
            }));
        }

        for(Thread t : ts){
            t.start();
        }
    }
}

线程通信

img_9b28cecb9ab991391e3dcf82e21301d7.png

ListAdd2.java,可以看出本来list已经到5了,那么t2应该出while循环抛异常,但是因为它执行了wait方法,释放锁了。而t1得到锁一直执行,虽然t1执行了notify方法,但是只是发出通知而已,只有它的方法执行完才释放锁让t2执行。

package com.bjsxt.base.conn008;

import java.util.ArrayList;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.LinkedBlockingQueue;
/**
 * wait notfiy 方法,wait释放锁,notfiy不释放锁
 * @author alienware
 *
 */
public class ListAdd2 {
    private volatile static List list = new ArrayList();    
    
    public void add(){
        list.add("bjsxt");
    }
    public int size(){
        return list.size();
    }
    
    public static void main(String[] args) {
        
        final ListAdd2 list2 = new ListAdd2();
        
        // 1 实例化出来一个 lock
        // 当使用wait 和 notify 的时候 , 一定要配合着synchronized关键字去使用
        final Object lock = new Object();
        
//      final CountDownLatch countDownLatch = new CountDownLatch(1);
        
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    synchronized (lock) {
                        for(int i = 0; i <10; i++){
                            list2.add();
                            System.out.println("当前线程:" + Thread.currentThread().getName() + "添加了一个元素..");
                            Thread.sleep(500);
                            if(list2.size() == 5){
                                System.out.println("已经发出通知..");
//                              countDownLatch.countDown();
                                lock.notify();
                            }
                        }                       
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }

            }
        }, "t1");
        
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (lock) {
                    if(list2.size() != 5){
                        try {
                            System.out.println("t2进入...");
                            lock.wait();
//                          countDownLatch.await();
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                    System.out.println("当前线程:" + Thread.currentThread().getName() + "收到通知线程停止..");
                    throw new RuntimeException();
                }
            }
        }, "t2");   
        
        t2.start();
        t1.start();
        
    }
    
}

img_83a2b5a96b930a497cc8c0f863d9781f.png
package com.xushu.multi;

import java.util.LinkedList;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

public class MyQueue {

    private LinkedList<Object> list = new LinkedList<Object>();

    private AtomicInteger count = new AtomicInteger(0);

    private final int minSize = 0;

    private final int maxSize;

    public MyQueue(int size) {
        this.maxSize = size;
    }

    private final Object lock = new Object();

    public void put(Object obj) {
        synchronized (lock) {
            if (count.get() == this.maxSize) {
                try {
                    lock.wait();
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
            list.add(obj);
            count.incrementAndGet();
            lock.notify();
            System.out.println("新加入的元素为:" + obj);
        }
    }

    public Object take() {
        Object ret = null;
        synchronized (lock) {
            if (count.get() == minSize) {
                try {
                    lock.wait();
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
            ret = list.removeFirst();
            count.decrementAndGet();
            lock.notify();
        }
        return ret;
    }

    public int getSize() {
        return this.count.get();
    }

    public static void main(String[] args) {

        final MyQueue mq = new MyQueue(5);
        mq.put("a");
        mq.put("b");
        mq.put("c");
        mq.put("d");

        System.out.println("当前容器的长度:" + mq.getSize());

        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                mq.put("f");
                mq.put("g");
                mq.put("e");
            }
        }, "t1");

        t1.start();

        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                Object o1 = mq.take();
                System.out.println("移除的元素为:" + o1);
                Object o2 = mq.take();
                System.out.println("移除的元素为:" + o2);
            }
        }, "t2");

        try {
            TimeUnit.SECONDS.sleep(2);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        t2.start();
    }
}

相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
1月前
|
存储 Java
【编程基础知识】 分析学生成绩:用Java二维数组存储与输出
本文介绍如何使用Java二维数组存储和处理多个学生的各科成绩,包括成绩的输入、存储及格式化输出,适合初学者实践Java基础知识。
72 1
|
17天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
22天前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
40 2
|
22天前
|
Java 数据库连接 数据库
如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面
本文介绍了如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面。通过合理配置初始连接数、最大连接数和空闲连接超时时间,确保系统性能和稳定性。文章还探讨了同步阻塞、异步回调和信号量等并发控制策略,并提供了异常处理的最佳实践。最后,给出了一个简单的连接池示例代码,并推荐使用成熟的连接池框架(如HikariCP、C3P0)以简化开发。
44 2
|
23天前
|
Java 关系型数据库 数据库
面向对象设计原则在Java中的实现与案例分析
【10月更文挑战第25天】本文通过Java语言的具体实现和案例分析,详细介绍了面向对象设计的五大核心原则:单一职责原则、开闭原则、里氏替换原则、接口隔离原则和依赖倒置原则。这些原则帮助开发者构建更加灵活、可维护和可扩展的系统,不仅适用于Java,也适用于其他面向对象编程语言。
14 2
|
1月前
|
Java
让星星⭐月亮告诉你,Java synchronized(*.class) synchronized 方法 synchronized(this)分析
本文通过Java代码示例,介绍了`synchronized`关键字在类和实例方法上的使用。总结了三种情况:1) 类级别的锁,多个实例对象在同一时刻只能有一个获取锁;2) 实例方法级别的锁,多个实例对象可以同时执行;3) 同一实例对象的多个线程,同一时刻只能有一个线程执行同步方法。
19 1
|
1月前
|
Java
【编程进阶知识】揭秘Java多线程:并发与顺序编程的奥秘
本文介绍了Java多线程编程的基础,通过对比顺序执行和并发执行的方式,展示了如何使用`run`方法和`start`方法来控制线程的执行模式。文章通过具体示例详细解析了两者的异同及应用场景,帮助读者更好地理解和运用多线程技术。
29 1
|
1月前
|
小程序 Oracle Java
JVM知识体系学习一:JVM了解基础、java编译后class文件的类结构详解,class分析工具 javap 和 jclasslib 的使用
这篇文章是关于JVM基础知识的介绍,包括JVM的跨平台和跨语言特性、Class文件格式的详细解析,以及如何使用javap和jclasslib工具来分析Class文件。
45 0
JVM知识体系学习一:JVM了解基础、java编译后class文件的类结构详解,class分析工具 javap 和 jclasslib 的使用
|
27天前
|
存储 Java 编译器
[Java]基本数据类型与引用类型赋值的底层分析
本文详细分析了Java中不同类型引用的存储方式,包括int、Integer、int[]、Integer[]等,并探讨了byte与其他类型间的转换及String的相关特性。文章通过多个示例解释了引用和对象的存储位置,以及字符串常量池的使用。此外,还对比了String和StringBuilder的性能差异,帮助读者深入理解Java内存管理机制。
19 0
|
28天前
|
SQL 缓存 安全
[Java]volatile关键字
本文介绍了Java中volatile关键字的原理与应用,涵盖JMM规范、并发编程的三大特性(可见性、原子性、有序性),并通过示例详细解析了volatile如何实现可见性和有序性,以及如何结合synchronized、Lock和AtomicInteger确保原子性,最后讨论了volatile在单例模式中的经典应用。
36 0