Spark机器学习1·编程入门(scala/java/python)

简介: Spark机器学习1·编程入门

Spark安装目录

/Users/erichan/Garden/spark-1.4.0-bin-hadoop2.6
  • 基本测试
./bin/run-example org.apache.spark.examples.SparkPi
MASTER=local[20] ./bin/run-example org.apache.spark.examples.SparkPi

scala

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

/**
 * A simple Spark app in Scala
 */
object ScalaApp {

  def main(args: Array[String]) {
    val sc = new SparkContext("local[2]", "First Spark App")
    val data = sc.textFile("data/UserPurchaseHistory.csv")
      .map(line => line.split(","))
      .map(purchaseRecord => (purchaseRecord(0), purchaseRecord(1), purchaseRecord(2)))
    val numPurchases = data.count()
    val uniqueUsers = data.map { case (user, product, price) => user }.distinct().count()
    val totalRevenue = data.map { case (user, product, price) => price.toDouble }.sum()
    val productsByPopularity = data
      .map { case (user, product, price) => (product, 1) }
      .reduceByKey(_ + _)
      .collect()
      .sortBy(-_._2)

    val mostPopular = productsByPopularity(0)
    println("Total purchases: " + numPurchases)
    println("Unique users: " + uniqueUsers)
    println("Total revenue: " + totalRevenue)
    println("Most popular product: %s with %d purchases".format(mostPopular._1, mostPopular._2))
    sc.stop()
  }
}

build.sbt

name := "scala-spark-app"

version := "1.0"

scalaVersion := "2.11.6"

libraryDependencies += "org.apache.spark" %% "spark-core" % "1.4.0"
erichan:scala-spark-app/ $ sbt run

java 8

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
import java.util.List;
public class JavaApp {
    public static void main(String[] args) {
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<String[]> data = sc.textFile("data/UserPurchaseHistory.csv").map(s -> s.split(","));
        long numPurchases = data.count();
        long uniqueUsers = data.map(strings -> strings[0]).distinct().count();
        double totalRevenue = data.mapToDouble(strings -> Double.parseDouble(strings[2])).sum();

        List<Tuple2<String, Integer>> pairs = data.mapToPair(
                new PairFunction<String[], String, Integer>() {
                    @Override
                    public Tuple2<String, Integer> call(String[] strings) throws Exception {
                        return new Tuple2(strings[1], 1);
                    }
                }
        ).reduceByKey((i1, i2) -> i1 + i2).collect();
        pairs.sort((o1, o2) -> -(o1._2() - o2._2()));

        String mostPopular = pairs.get(0)._1();
        int purchases = pairs.get(0)._2();
        System.out.println("Total purchases: " + numPurchases);
        System.out.println("Unique users: " + uniqueUsers);
        System.out.println("Total revenue: " + totalRevenue);
        System.out.println(String.format("Most popular product: %s with %d purchases", mostPopular, purchases));
        sc.stop();
    }
}

Maven pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>java-spark-app</groupId>
    <artifactId>java-spark-app</artifactId>
    <version>1.0</version>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>1.4.0</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>

python

from pyspark import SparkContext

sc = SparkContext("local[2]", "First Spark App")
data = sc.textFile("data/UserPurchaseHistory.csv").map(lambda line: line.split(",")).map(lambda record: (record[0], record[1], record[2]))
numPurchases = data.count()
uniqueUsers = data.map(lambda record: record[0]).distinct().count()
totalRevenue = data.map(lambda record: float(record[2])).sum()
products = data.map(lambda record: (record[1], 1.0)).reduceByKey(lambda a, b: a + b).collect()
mostPopular = sorted(products, key=lambda x: x[1], reverse=True)[0]

print "Total purchases: %d" % numPurchases
print "Unique users: %d" % uniqueUsers
print "Total revenue: %2.2f" % totalRevenue
print "Most popular product: %s with %d purchases" % (mostPopular[0], mostPopular[1])

sc.stop()
cd /Users/erichan/Garden/spark-1.4.0-bin-hadoop2.6/bin
./spark-submit pythonapp.py  
目录
相关文章
|
5天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
2天前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
1天前
|
设计模式 缓存 开发者
Python中的装饰器:从入门到实践####
本文深入探讨了Python中强大的元编程工具——装饰器,它能够以简洁优雅的方式扩展函数或方法的功能。通过具体实例和逐步解析,文章不仅介绍了装饰器的基本原理、常见用法及高级应用,还揭示了其背后的设计理念与实现机制,旨在帮助读者从理论到实战全面掌握这一技术,提升代码的可读性、可维护性和复用性。 ####
|
5天前
|
存储 人工智能 数据挖掘
Python编程入门:打造你的第一个程序
本文旨在为初学者提供Python编程的初步指导,通过介绍Python语言的基础概念、开发环境的搭建以及一个简单的代码示例,帮助读者快速入门。文章将引导你理解编程思维,学会如何编写、运行和调试Python代码,从而开启编程之旅。
27 2
|
6天前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
6天前
|
存储 Python
Python编程入门:理解基础语法与编写简单程序
本文旨在为初学者提供一个关于如何开始使用Python编程语言的指南。我们将从安装Python环境开始,逐步介绍变量、数据类型、控制结构、函数和模块等基本概念。通过实例演示和练习,读者将学会如何编写简单的Python程序,并了解如何解决常见的编程问题。文章最后将提供一些资源,以供进一步学习和实践。
17 1
|
7天前
|
机器学习/深度学习 存储 数据挖掘
Python 编程入门:理解变量、数据类型和基本运算
【10月更文挑战第43天】在编程的海洋中,Python是一艘易于驾驭的小船。本文将带你启航,探索Python编程的基础:变量的声明与使用、丰富的数据类型以及如何通过基本运算符来操作它们。我们将从浅显易懂的例子出发,逐步深入到代码示例,确保即使是零基础的读者也能跟上步伐。准备好了吗?让我们开始吧!
18 0
|
24天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
69 2
ClickHouse与大数据生态集成:Spark & Flink 实战

热门文章

最新文章

下一篇
无影云桌面