mahout运行测试与数据挖掘算法之聚类分析(一)kmeans算法解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq1010885678/article/details/44984327 在...
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq1010885678/article/details/44984327

在使用mahout之前要安装并启动hadoop集群

将mahout的包上传至linux中并解压即可

mahout下载地址:

点击打开链接


mahout中的算法大致可以分为三大类:

聚类,协同过滤和分类

其中

常用聚类算法有:canopy聚类,k均值算法(kmeans),模糊k均值,层次聚类,LDA聚类等

常用分类算法有:贝叶斯,逻辑回归,支持向量机,感知器,神经网络等


下面将运行mahout中自带的example例子jar包来查看mahou是否能正确运行

练习数据下载地址:

点击打开链接

上面的练习数据是用来检测kmeans聚类算法的数据

使用hadoop命令运行mahout的例子程序(确保hadoop集群已开启)

在例子代码中写死了输入的路径是/user/hadoop/testdata

将练习数据上传到hdfs中对应的testdata目录下即可

写死的输出路径是/user/hadoop/output

执行命令:

hadoop jar ~/mahout/mahout-examples-0.9-job.jar org.apache.mahout.clustering.syntheticcontrol.kmeans.Job

开始执行任务


由于聚类算法是一种迭代的过程(之后会讲解)

所欲他会一直重复的执行mr任务到符合要求(这其中的过程可能有点久。。。)

运行结果如下:


mahout无异常

执行完这个kmeans算法之后产生的文件按普通方式是查看不了的,看到的只是一堆莫名其妙的数据

需要用mahout的seqdumper命令来下载到本地linux上才能查看正常结果

查看聚类分析的结果:

./mahout seqdumper -s /user/hadoop/output/data/part-m-0000 /home/hadoop/res

之后使用cat命令即可查看

cat res | more


现在来说说什么是kmeans聚类算法

所谓聚类算法就是将一份数据,按照我们想要的或者这份数据中的规律来将数据分类的算法

例如:

现有一份杂乱的样本数据,我们希望数据最后按照某些类别来划分(红豆分为红豆,绿豆分为绿豆等意思)

聚类算法会从n个类的初始中心开始(如果没有人为设置,其会按照随机的初始中心开始)

什么意思呢?来看一张图


上图中,左一的圆圈表示原始数据在随机的初始中心划分后的的分布

但是可以看出很明显cluster1中有很多是靠近cluster2的数据点

所以kmeans会根据规则再次计算出更加合适的中心点来进行划分

这个规则就是:

计算每个数据点,到原始中心cluster1和cluster2的距离

离谁比较近就划分到谁那边去(形如中间的圆圈)

然后将cluster1和cluster2中的数据分别求平均值,得到的两个平均值成为新的cluster1和cluster2中心点

但是很明显这样划分还是不够合理

所以kmeans会继续迭代计算每个数据到新的中心点的距离

离谁比较近就划分给谁

然后在分别求平均值得到新的中心点

直到cluster1和cluster2中的数据平均值不在发生变化时认为此时是最理想的划分方式(也可以进行人工的干预)


该算法的最大优势在于简介快速。算法的关键在于初始中心的选择和计算距离的公式


最后在调用一个mahout的一个算法来测试mahout

调用fpg算法(实现计数频繁项集的算法)

测试数据下载(电商购物车数据)

点击打开链接

在mahout的bin目录下

./mahout fpg -i /user/hadoop/testdata/tail.txt -o /user/hadoop/output -method mapreduce -s 1000 -regex '[]'

各个参数的意义:

-i:指定输入数据的路径

-o:指定输出结果的路径

-method:指定使用mapreduce方法

-s:最小支持度

-regex:使用指定的正则来匹配过滤数据


同样的,运行结果的数据要通过seqdumper来查看

相关文章
|
2月前
|
存储 算法 安全
.NET 平台 SM2 国密算法 License 证书生成深度解析
授权证书文件的后缀通常取决于其编码格式和具体用途。本文档通过一个示例程序展示了如何在 .NET 平台上使用国密 SM2 算法生成和验证许可证(License)文件。该示例不仅详细演示了 SM2 国密算法的实际应用场景,还提供了关于如何高效处理大规模许可证文件生成任务的技术参考。通过对不同并发策略的性能测试,开发者可以更好地理解如何优化许可证生成流程,以满足高并发和大数据量的需求。 希望这段描述更清晰地传达了程序的功能和技术亮点。
172 13
.NET 平台 SM2 国密算法 License 证书生成深度解析
|
8天前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
30 4
|
11天前
|
存储 监控 算法
员工电脑监控场景下 Python 红黑树算法的深度解析
在当代企业管理范式中,员工电脑监控业已成为一种广泛采用的策略性手段,其核心目标在于维护企业信息安全、提升工作效能并确保合规性。借助对员工电脑操作的实时监测机制,企业能够敏锐洞察潜在风险,诸如数据泄露、恶意软件侵袭等威胁。而员工电脑监控系统的高效运作,高度依赖于底层的数据结构与算法架构。本文旨在深入探究红黑树(Red - Black Tree)这一数据结构在员工电脑监控领域的应用,并通过 Python 代码实例详尽阐释其实现机制。
37 6
|
30天前
|
监控 算法 安全
基于 C# 的内网行为管理软件入侵检测算法解析
当下数字化办公环境中,内网行为管理软件已成为企业维护网络安全、提高办公效率的关键工具。它宛如一位恪尽职守的网络守护者,持续监控内网中的各类活动,以确保数据安全及网络稳定。在其诸多功能实现的背后,先进的数据结构与算法发挥着至关重要的作用。本文将深入探究一种应用于内网行为管理软件的 C# 算法 —— 基于二叉搜索树的入侵检测算法,并借助具体代码例程予以解析。
43 4
|
2月前
|
编解码 缓存 Prometheus
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
本期内容为「ximagine」频道《显示器测试流程》的规范及标准,我们主要使用Calman、DisplayCAL、i1Profiler等软件及CA410、Spyder X、i1Pro 2等设备,是我们目前制作内容数据的重要来源,我们深知所做的仍是比较表面的活儿,和工程师、科研人员相比有着不小的差距,测试并不复杂,但是相当繁琐,收集整理测试无不花费大量时间精力,内容不完善或者有错误的地方,希望大佬指出我们好改进!
173 16
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
|
1月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
2月前
|
缓存 Java 测试技术
【01】噩梦终结flutter配安卓android鸿蒙harmonyOS 以及next调试环境配鸿蒙和ios真机调试环境-flutter项目安卓环境配置-gradle-agp-ndkVersion模拟器运行真机测试环境-本地环境搭建-如何快速搭建android本地运行环境-优雅草卓伊凡-很多人在这步就被难倒了
【01】噩梦终结flutter配安卓android鸿蒙harmonyOS 以及next调试环境配鸿蒙和ios真机调试环境-flutter项目安卓环境配置-gradle-agp-ndkVersion模拟器运行真机测试环境-本地环境搭建-如何快速搭建android本地运行环境-优雅草卓伊凡-很多人在这步就被难倒了
286 3
【01】噩梦终结flutter配安卓android鸿蒙harmonyOS 以及next调试环境配鸿蒙和ios真机调试环境-flutter项目安卓环境配置-gradle-agp-ndkVersion模拟器运行真机测试环境-本地环境搭建-如何快速搭建android本地运行环境-优雅草卓伊凡-很多人在这步就被难倒了
|
1月前
|
存储 监控 算法
关于员工上网监控系统中 PHP 关联数组算法的学术解析
在当代企业管理中,员工上网监控系统是维护信息安全和提升工作效率的关键工具。PHP 中的关联数组凭借其灵活的键值对存储方式,在记录员工网络活动、管理访问规则及分析上网行为等方面发挥重要作用。通过关联数组,系统能高效记录每位员工的上网历史,设定网站访问权限,并统计不同类型的网站访问频率,帮助企业洞察员工上网模式,发现潜在问题并采取相应管理措施,从而保障信息安全和提高工作效率。
38 7
|
2月前
|
存储 监控 算法
探秘员工泄密行为防线:基于Go语言的布隆过滤器算法解析
在信息爆炸时代,员工泄密行为对企业构成重大威胁。本文聚焦布隆过滤器(Bloom Filter)这一高效数据结构,结合Go语言实现算法,帮助企业识别和预防泄密风险。通过构建正常操作“指纹库”,实时监测员工操作,快速筛查可疑行为。示例代码展示了如何利用布隆过滤器检测异常操作,并提出优化建议,如调整参数、结合日志分析系统等,全方位筑牢企业信息安全防线,守护核心竞争力。
|
2月前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
191 0

热门文章

最新文章

推荐镜像

更多