Java aio(异步网络IO)初探

简介: 【本文转载于Java aio(异步网络IO)初探】 按照《Unix网络编程》的划分,IO模型可以分为:阻塞IO、非阻塞IO、IO复用、信号驱动IO和异步IO,按照POSIX标准来划分只分为两类:同步IO和异步IO。如何区分呢?首先一个IO操作其实分成了两个步骤:发起IO请求和实际的IO操作,同步IO和异步IO的区别就在于第二个步骤是否阻塞,如果实际的IO读写阻塞请求进程,那么就是

【本文转载于Java aio(异步网络IO)初探

按照《Unix网络编程》的划分,IO模型可以分为:阻塞IO、非阻塞IO、IO复用、信号驱动IO和异步IO,按照POSIX标准来划分只分为两类:同步IO和异步IO。如何区分呢?首先一个IO操作其实分成了两个步骤:发起IO请求和实际的IO操作,同步IO和异步IO的区别就在于第二个步骤是否阻塞,如果实际的IO读写阻塞请求进程,那么就是同步IO,因此阻塞IO、非阻塞IO、IO服用、信号驱动IO都是同步IO,如果不阻塞,而是操作系统帮你做完IO操作再将结果返回给你,那么就是异步IO。阻塞IO和非阻塞IO的区别在于第一步,发起IO请求是否会被阻塞,如果阻塞直到完成那么就是传统的阻塞IO,如果不阻塞,那么就是非阻塞IO。

   Java nio 2.0的主要改进就是引入了异步IO(包括文件和网络),这里主要介绍下异步网络IO API的使用以及框架的设计,以TCP服务端为例。首先看下为了支持AIO引入的新的类和接口:

 java.nio.channels.AsynchronousChannel
       标记一个channel支持异步IO操作。

 java.nio.channels.AsynchronousServerSocketChannel
       ServerSocket的aio版本,创建TCP服务端,绑定地址,监听端口等。

 java.nio.channels.AsynchronousSocketChannel
       面向流的异步socket channel,表示一个连接。

 java.nio.channels.AsynchronousChannelGroup
       异步channel的分组管理,目的是为了资源共享。一个AsynchronousChannelGroup绑定一个线程池,这个线程池执行两个任务:处理IO事件和派发CompletionHandler。AsynchronousServerSocketChannel创建的时候可以传入一个 AsynchronousChannelGroup,那么通过AsynchronousServerSocketChannel创建的 AsynchronousSocketChannel将同属于一个组,共享资源。

 java.nio.channels.CompletionHandler
       异步IO操作结果的回调接口,用于定义在IO操作完成后所作的回调工作。AIO的API允许两种方式来处理异步操作的结果:返回的Future模式或者注册CompletionHandler,我更推荐用CompletionHandler的方式,这些handler的调用是由 AsynchronousChannelGroup的线程池派发的。显然,线程池的大小是性能的关键因素。AsynchronousChannelGroup允许绑定不同的线程池,通过三个静态方法来创建:

Java代码   收藏代码
  1. public static AsynchronousChannelGroup withFixedThreadPool(int nThreads,  
  2.                                                               ThreadFactory threadFactory)  
  3.        throws IOException  
  4.   
  5. public static AsynchronousChannelGroup withCachedThreadPool(ExecutorService executor,  
  6.                                                                int initialSize)  
  7.   
  8. public static AsynchronousChannelGroup withThreadPool(ExecutorService executor)  
  9.        throws IOException  
 

     需要根据具体应用相应调整,从框架角度出发,需要暴露这样的配置选项给用户。

     在介绍完了aio引入的TCP的主要接口和类之后,我们来设想下一个aio框架应该怎么设计。参考非阻塞nio框架的设计,一般都是采用Reactor模式,Reacot负责事件的注册、select、事件的派发;相应地,异步IO有个Proactor模式,Proactor负责 CompletionHandler的派发,查看一个典型的IO写操作的流程来看两者的区别:

     Reactor:  send(msg) -> 消息队列是否为空,如果为空  -> 向Reactor注册OP_WRITE,然后返回 -> Reactor select -> 触发Writable,通知用户线程去处理 ->先注销Writable(很多人遇到的cpu 100%的问题就在于没有注销),处理Writeable,如果没有完全写入,继续注册OP_WRITE。注意到,写入的工作还是用户线程在处理。
     Proactor: send(msg) -> 消息队列是否为空,如果为空,发起read异步调用,并注册CompletionHandler,然后返回。 -> 操作系统负责将你的消息写入,并返回结果(写入的字节数)给Proactor -> Proactor派发CompletionHandler。可见,写入的工作是操作系统在处理,无需用户线程参与。事实上在aio的API 中,AsynchronousChannelGroup就扮演了Proactor的角色

    CompletionHandler有三个方法,分别对应于处理成功、失败、被取消(通过返回的Future)情况下的回调处理:

Java代码   收藏代码
  1. public interface CompletionHandler<V,A> {  
  2.   
  3.      void completed(V result, A attachment);  
  4.   
  5.     void failed(Throwable exc, A attachment);  
  6.   
  7.      
  8.     void cancelled(A attachment);  
  9. }  
 


    其中的泛型参数V表示IO调用的结果,而A是发起调用时传入的attchment。

    在初步介绍完aio引入的类和接口后,我们看看一个典型的tcp服务端是怎么启动的,怎么接受连接并处理读和写,这里引用的代码都是yanf4j 的aio分支中的代码,可以从svn checkout,svn地址: http://yanf4j.googlecode.com/svn/branches/yanf4j-aio

    第一步,创建一个AsynchronousServerSocketChannel,创建之前先创建一个 AsynchronousChannelGroup,上文提到AsynchronousServerSocketChannel可以绑定一个 AsynchronousChannelGroup,那么通过这个AsynchronousServerSocketChannel建立的连接都将同属于一个AsynchronousChannelGroup并共享资源:

Java代码   收藏代码
  1. this.asynchronousChannelGroup = AsynchronousChannelGroup  
  2.                     .withCachedThreadPool(Executors.newCachedThreadPool(),  
  3.                             this.threadPoolSize);  

     然后初始化一个AsynchronousServerSocketChannel,通过open方法:

Java代码   收藏代码
  1. this.serverSocketChannel = AsynchronousServerSocketChannel  
  2.                 .open(this.asynchronousChannelGroup);  
 

    通过nio 2.0引入的SocketOption类设置一些TCP选项:

Java代码   收藏代码
  1. this.serverSocketChannel  
  2.                     .setOption(  
  3.                             StandardSocketOption.SO_REUSEADDR,true);  
  4. this.serverSocketChannel  
  5.                     .setOption(  
  6.                             StandardSocketOption.SO_RCVBUF,16*1024);  
 


    绑定本地地址:

Java代码   收藏代码
  1. this.serverSocketChannel  
  2.                     .bind(new InetSocketAddress("localhost",8080), 100);  
 

   
    其中的100用于指定等待连接的队列大小(backlog)。完了吗?还没有,最重要的监听工作还没开始,监听端口是为了等待连接上来以便accept产生一个AsynchronousSocketChannel来表示一个新建立的连接,因此需要发起一个accept调用,调用是异步的,操作系统将在连接建立后,将最后的结果——AsynchronousSocketChannel返回给你:

Java代码   收藏代码
  1. public void pendingAccept() {  
  2.         if (this.started && this.serverSocketChannel.isOpen()) {  
  3.             this.acceptFuture = this.serverSocketChannel.accept(null,  
  4.                     new AcceptCompletionHandler());  
  5.   
  6.         } else {  
  7.             throw new IllegalStateException("Controller has been closed");  
  8.         }  
  9.     }  
 


   注意,重复的accept调用将会抛出PendingAcceptException,后文提到的read和write也是如此。accept方法的第一个参数是你想传给CompletionHandler的attchment,第二个参数就是注册的用于回调的CompletionHandler,最后返回结果Future<AsynchronousSocketChannel>。你可以对future做处理,这里采用更推荐的方式就是注册一个CompletionHandler。那么accept的CompletionHandler中做些什么工作呢?显然一个赤裸裸的 AsynchronousSocketChannel是不够的,我们需要将它封装成session,一个session表示一个连接(mina里就叫 IoSession了),里面带了一个缓冲的消息队列以及一些其他资源等。在连接建立后,除非你的服务器只准备接受一个连接,不然你需要在后面继续调用pendingAccept来发起另一个accept请求

Java代码   收藏代码
  1. private final class AcceptCompletionHandler implements  
  2.             CompletionHandler<AsynchronousSocketChannel, Object> {  
  3.   
  4.         @Override  
  5.         public void cancelled(Object attachment) {  
  6.             logger.warn("Accept operation was canceled");  
  7.         }  
  8.   
  9.         @Override  
  10.         public void completed(AsynchronousSocketChannel socketChannel,  
  11.                 Object attachment) {  
  12.             try {  
  13.                 logger.debug("Accept connection from "  
  14.                         + socketChannel.getRemoteAddress());  
  15.                 configureChannel(socketChannel);  
  16.                 AioSessionConfig sessionConfig = buildSessionConfig(socketChannel);  
  17.                 Session session = new AioTCPSession(sessionConfig,  
  18.                         AioTCPController.this.configuration  
  19.                                 .getSessionReadBufferSize(),  
  20.                         AioTCPController.this.sessionTimeout);  
  21.                 session.start();  
  22.                 registerSession(session);  
  23.             } catch (Exception e) {  
  24.                 e.printStackTrace();  
  25.                 logger.error("Accept error", e);  
  26.                 notifyException(e);  
  27.             } finally {  
  28.                 <strong>pendingAccept</strong>();  
  29.             }  
  30.         }  
  31.   
  32.         @Override  
  33.         public void failed(Throwable exc, Object attachment) {  
  34.             logger.error("Accept error", exc);  
  35.             try {  
  36.                 notifyException(exc);  
  37.             } finally {  
  38.                 <strong>pendingAccept</strong>();  
  39.             }  
  40.         }  
  41.     }  
 

  
    注意到了吧,我们在failed和completed方法中在最后都调用了pendingAccept来继续发起accept调用,等待新的连接上来。有的同学可能要说了,这样搞是不是递归调用,会不会堆栈溢出?实际上不会,因为发起accept调用的线程与CompletionHandler回调的线程并非同一个,不是一个上下文中,两者之间没有耦合关系。要注意到,CompletionHandler的回调共用的是 AsynchronousChannelGroup绑定的线程池,因此千万别在CompletionHandler回调方法中调用阻塞或者长时间的操作,例如sleep,回调方法最好能支持超时,防止线程池耗尽。

    连接建立后,怎么读和写呢?回忆下在nonblocking nio框架中,连接建立后的第一件事是干什么?注册OP_READ事件等待socket可读。异步IO也同样如此,连接建立后马上发起一个异步read调用,等待socket可读,这个是Session.start方法中所做的事情:

Java代码   收藏代码
  1. public class AioTCPSession {  
  2.     protected void start0() {  
  3.         pendingRead();  
  4.     }  
  5.   
  6.     protected final void pendingRead() {  
  7.         if (!isClosed() && this.asynchronousSocketChannel.isOpen()) {  
  8.             if (!this.readBuffer.hasRemaining()) {  
  9.                 this.readBuffer = ByteBufferUtils  
  10.                         .increaseBufferCapatity(this.readBuffer);  
  11.             }  
  12.             this.readFuture = this.asynchronousSocketChannel.read(  
  13.                     this.readBuffer, thisthis.readCompletionHandler);  
  14.         } else {  
  15.             throw new IllegalStateException(  
  16.                     "Session Or Channel has been closed");  
  17.         }  
  18.     }  
  19.      
  20. }  
 

     AsynchronousSocketChannel的read调用与AsynchronousServerSocketChannel的accept调用类似,同样是非阻塞的,返回结果也是一个Future,但是写的结果是整数,表示写入了多少字节,因此read调用返回的是 Future<Integer>,方法的第一个参数是读的缓冲区,操作系统将IO读到数据拷贝到这个缓冲区,第二个参数是传递给 CompletionHandler的attchment,第三个参数就是注册的用于回调的CompletionHandler。这里保存了read的结果Future,这是为了在关闭连接的时候能够主动取消调用,accept也是如此。现在可以看看read的CompletionHandler的实现:

Java代码   收藏代码
  1. public final class ReadCompletionHandler implements  
  2.         CompletionHandler<Integer, AbstractAioSession> {  
  3.   
  4.     private static final Logger log = LoggerFactory  
  5.             .getLogger(ReadCompletionHandler.class);  
  6.     protected final AioTCPController controller;  
  7.   
  8.     public ReadCompletionHandler(AioTCPController controller) {  
  9.         this.controller = controller;  
  10.     }  
  11.   
  12.     @Override  
  13.     public void cancelled(AbstractAioSession session) {  
  14.         log.warn("Session(" + session.getRemoteSocketAddress()  
  15.                 + ") read operation was canceled");  
  16.     }  
  17.   
  18.     @Override  
  19.     public void completed(Integer result, AbstractAioSession session) {  
  20.         if (log.isDebugEnabled())  
  21.             log.debug("Session(" + session.getRemoteSocketAddress()  
  22.                     + ") read +" + result + " bytes");  
  23.         if (result < 0) {  
  24.             session.close();  
  25.             return;  
  26.         }  
  27.         try {  
  28.             if (result > 0) {  
  29.                 session.updateTimeStamp();  
  30.                 session.getReadBuffer().flip();  
  31.                 session.decode();  
  32.                 session.getReadBuffer().compact();  
  33.             }  
  34.         } finally {  
  35.             try {  
  36.                 session.pendingRead();  
  37.             } catch (IOException e) {  
  38.                 session.onException(e);  
  39.                 session.close();  
  40.             }  
  41.         }  
  42.         controller.checkSessionTimeout();  
  43.     }  
  44.   
  45.     @Override  
  46.     public void failed(Throwable exc, AbstractAioSession session) {  
  47.         log.error("Session read error", exc);  
  48.         session.onException(exc);  
  49.         session.close();  
  50.     }  
  51.   
  52. }  
 

   如果IO读失败,会返回失败产生的异常,这种情况下我们就主动关闭连接,通过session.close()方法,这个方法干了两件事情:关闭channel和取消read调用:

Java代码   收藏代码
  1. if (null != this.readFuture) {  
  2.             this.readFuture.cancel(true);  
  3.         }  
  4. this.asynchronousSocketChannel.close();  
 

   在读成功的情况下,我们还需要判断结果result是否小于0,如果小于0就表示对端关闭了,这种情况下我们也主动关闭连接并返回。如果读到一定字节,也就是result大于0的情况下,我们就尝试从读缓冲区中decode出消息,并派发给业务处理器的回调方法,最终通过pendingRead继续发起read调用等待socket的下一次可读。可见,我们并不需要自己去调用channel来进行IO读,而是操作系统帮你直接读到了缓冲区,然后给你一个结果表示读入了多少字节,你处理这个结果即可。而nonblocking IO框架中,是reactor通知用户线程socket可读了,然后用户线程自己去调用read进行实际读操作。这里还有个需要注意的地方,就是decode出来的消息的派发给业务处理器工作最好交给一个线程池来处理,避免阻塞group绑定的线程池。
  
   IO写的操作与此类似,不过通常写的话我们会在session中关联一个缓冲队列来处理,没有完全写入或者等待写入的消息都存放在队列中,队列为空的情况下发起write调用:

Java代码   收藏代码
  1. protected void write0(WriteMessage message) {  
  2.       boolean needWrite = false;  
  3.       synchronized (this.writeQueue) {  
  4.           needWrite = this.writeQueue.isEmpty();  
  5.           this.writeQueue.offer(message);  
  6.       }  
  7.       if (needWrite) {  
  8.           pendingWrite(message);  
  9.       }  
  10.   }  
  11.   
  12.   protected final void pendingWrite(WriteMessage message) {  
  13.       message = preprocessWriteMessage(message);  
  14.       if (!isClosed() && this.asynchronousSocketChannel.isOpen()) {  
  15.           this.asynchronousSocketChannel.write(message.getWriteBuffer(),  
  16.                   thisthis.writeCompletionHandler);  
  17.       } else {  
  18.           throw new IllegalStateException(  
  19.                   "Session Or Channel has been closed");  
  20.       }  
  21.   }  
 

    write调用返回的结果与read一样是一个Future<Integer>,而write的CompletionHandler处理的核心逻辑大概是这样:

Java代码   收藏代码
  1. @Override  
  2.     public void completed(Integer result, AbstractAioSession session) {  
  3.         if (log.isDebugEnabled())  
  4.             log.debug("Session(" + session.getRemoteSocketAddress()  
  5.                     + ") writen " + result + " bytes");  
  6.                   
  7.         WriteMessage writeMessage;  
  8.         Queue<WriteMessage> writeQueue = session.getWriteQueue();  
  9.         synchronized (writeQueue) {  
  10.             writeMessage = writeQueue.peek();  
  11.             if (writeMessage.getWriteBuffer() == null  
  12.                     || !writeMessage.getWriteBuffer().hasRemaining()) {  
  13.                 writeQueue.remove();  
  14.                 if (writeMessage.getWriteFuture() != null) {  
  15.                     writeMessage.getWriteFuture().setResult(Boolean.TRUE);  
  16.                 }  
  17.                 try {  
  18.                     session.getHandler().onMessageSent(session,  
  19.                             writeMessage.getMessage());  
  20.                 } catch (Exception e) {  
  21.                     session.onException(e);  
  22.                 }  
  23.                 writeMessage = writeQueue.peek();  
  24.             }  
  25.         }  
  26.         if (writeMessage != null) {  
  27.             try {  
  28.                 session.pendingWrite(writeMessage);  
  29.             } catch (IOException e) {  
  30.                 session.onException(e);  
  31.                 session.close();  
  32.             }  
  33.         }  
  34.     }  
 


   compete方法中的result就是实际写入的字节数,然后我们判断消息的缓冲区是否还有剩余,如果没有就将消息从队列中移除,如果队列中还有消息,那么继续发起write调用。

   重复一下,这里引用的代码都是yanf4j aio分支中的源码,感兴趣的朋友可以直接check out出来看看:http://yanf4j.googlecode.com/svn/branches/yanf4j-aio
   在引入了aio之后,java对于网络层的支持已经非常完善,该有的都有了,java也已经成为服务器开发的首选语言之一。java的弱项在于对内存的管理上,由于这一切都交给了GC,因此在高性能的网络服务器上还是Cpp的天下。java这种单一堆模型比之erlang的进程内堆模型还是有差距,很难做到高效的垃圾回收和细粒度的内存管理。

   这里仅仅是介绍了aio开发的核心流程,对于一个网络框架来说,还需要考虑超时的处理、缓冲buffer的处理、业务层和网络层的切分、可扩展性、性能的可调性以及一定的通用性要求。

目录
相关文章
|
10月前
|
存储 监控 安全
单位网络监控软件:Java 技术驱动的高效网络监管体系构建
在数字化办公时代,构建基于Java技术的单位网络监控软件至关重要。该软件能精准监管单位网络活动,保障信息安全,提升工作效率。通过网络流量监测、访问控制及连接状态监控等模块,实现高效网络监管,确保网络稳定、安全、高效运行。
212 11
|
7月前
|
存储 网络协议 安全
Java网络编程,多线程,IO流综合小项目一一ChatBoxes
**项目介绍**:本项目实现了一个基于TCP协议的C/S架构控制台聊天室,支持局域网内多客户端同时聊天。用户需注册并登录,用户名唯一,密码格式为字母开头加纯数字。登录后可实时聊天,服务端负责验证用户信息并转发消息。 **项目亮点**: - **C/S架构**:客户端与服务端通过TCP连接通信。 - **多线程**:采用多线程处理多个客户端的并发请求,确保实时交互。 - **IO流**:使用BufferedReader和BufferedWriter进行数据传输,确保高效稳定的通信。 - **线程安全**:通过同步代码块和锁机制保证共享数据的安全性。
252 23
|
9月前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
339 17
|
8月前
|
缓存 网络协议 Java
JAVA网络IO之NIO/BIO
本文介绍了Java网络编程的基础与历史演进,重点阐述了IO和Socket的概念。Java的IO分为设备和接口两部分,通过流、字节、字符等方式实现与外部的交互。
234 0
|
12月前
|
Java
Java 中 IO 流的分类详解
【10月更文挑战第10天】不同类型的 IO 流具有不同的特点和适用场景,我们可以根据具体的需求选择合适的流来进行数据的输入和输出操作。在实际应用中,还可以通过组合使用多种流来实现更复杂的功能。
328 57
|
11月前
|
Java
java 中 IO 流
Java中的IO流是用于处理输入输出操作的机制,主要包括字节流和字符流两大类。字节流以8位字节为单位处理数据,如FileInputStream和FileOutputStream;字符流以16位Unicode字符为单位,如FileReader和FileWriter。这些流提供了读写文件、网络传输等基本功能。
179 10
|
11月前
|
网络协议 Java 物联网
Java网络编程知识点
Java网络编程知识点
143 13
|
12月前
|
存储 缓存 Java
java基础:IO流 理论与代码示例(详解、idea设置统一utf-8编码问题)
这篇文章详细介绍了Java中的IO流,包括字符与字节的概念、编码格式、File类的使用、IO流的分类和原理,以及通过代码示例展示了各种流的应用,如节点流、处理流、缓存流、转换流、对象流和随机访问文件流。同时,还探讨了IDEA中设置项目编码格式的方法,以及如何处理序列化和反序列化问题。
303 1
java基础:IO流 理论与代码示例(详解、idea设置统一utf-8编码问题)
|
11月前
|
JavaScript Java 中间件
Java CompletableFuture 异步超时实现探索
本文探讨了在JDK 8中`CompletableFuture`缺乏超时中断任务能力的问题,提出了一种异步超时实现方案,通过自定义工具类模拟JDK 9中`orTimeout`方法的功能,解决了任务超时无法精确控制的问题,适用于多线程并行执行优化场景。
242 0
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。