Java aio(异步网络IO)初探

简介: 【本文转载于Java aio(异步网络IO)初探】 按照《Unix网络编程》的划分,IO模型可以分为:阻塞IO、非阻塞IO、IO复用、信号驱动IO和异步IO,按照POSIX标准来划分只分为两类:同步IO和异步IO。如何区分呢?首先一个IO操作其实分成了两个步骤:发起IO请求和实际的IO操作,同步IO和异步IO的区别就在于第二个步骤是否阻塞,如果实际的IO读写阻塞请求进程,那么就是

【本文转载于Java aio(异步网络IO)初探

按照《Unix网络编程》的划分,IO模型可以分为:阻塞IO、非阻塞IO、IO复用、信号驱动IO和异步IO,按照POSIX标准来划分只分为两类:同步IO和异步IO。如何区分呢?首先一个IO操作其实分成了两个步骤:发起IO请求和实际的IO操作,同步IO和异步IO的区别就在于第二个步骤是否阻塞,如果实际的IO读写阻塞请求进程,那么就是同步IO,因此阻塞IO、非阻塞IO、IO服用、信号驱动IO都是同步IO,如果不阻塞,而是操作系统帮你做完IO操作再将结果返回给你,那么就是异步IO。阻塞IO和非阻塞IO的区别在于第一步,发起IO请求是否会被阻塞,如果阻塞直到完成那么就是传统的阻塞IO,如果不阻塞,那么就是非阻塞IO。

   Java nio 2.0的主要改进就是引入了异步IO(包括文件和网络),这里主要介绍下异步网络IO API的使用以及框架的设计,以TCP服务端为例。首先看下为了支持AIO引入的新的类和接口:

 java.nio.channels.AsynchronousChannel
       标记一个channel支持异步IO操作。

 java.nio.channels.AsynchronousServerSocketChannel
       ServerSocket的aio版本,创建TCP服务端,绑定地址,监听端口等。

 java.nio.channels.AsynchronousSocketChannel
       面向流的异步socket channel,表示一个连接。

 java.nio.channels.AsynchronousChannelGroup
       异步channel的分组管理,目的是为了资源共享。一个AsynchronousChannelGroup绑定一个线程池,这个线程池执行两个任务:处理IO事件和派发CompletionHandler。AsynchronousServerSocketChannel创建的时候可以传入一个 AsynchronousChannelGroup,那么通过AsynchronousServerSocketChannel创建的 AsynchronousSocketChannel将同属于一个组,共享资源。

 java.nio.channels.CompletionHandler
       异步IO操作结果的回调接口,用于定义在IO操作完成后所作的回调工作。AIO的API允许两种方式来处理异步操作的结果:返回的Future模式或者注册CompletionHandler,我更推荐用CompletionHandler的方式,这些handler的调用是由 AsynchronousChannelGroup的线程池派发的。显然,线程池的大小是性能的关键因素。AsynchronousChannelGroup允许绑定不同的线程池,通过三个静态方法来创建:

Java代码   收藏代码
  1. public static AsynchronousChannelGroup withFixedThreadPool(int nThreads,  
  2.                                                               ThreadFactory threadFactory)  
  3.        throws IOException  
  4.   
  5. public static AsynchronousChannelGroup withCachedThreadPool(ExecutorService executor,  
  6.                                                                int initialSize)  
  7.   
  8. public static AsynchronousChannelGroup withThreadPool(ExecutorService executor)  
  9.        throws IOException  
 

     需要根据具体应用相应调整,从框架角度出发,需要暴露这样的配置选项给用户。

     在介绍完了aio引入的TCP的主要接口和类之后,我们来设想下一个aio框架应该怎么设计。参考非阻塞nio框架的设计,一般都是采用Reactor模式,Reacot负责事件的注册、select、事件的派发;相应地,异步IO有个Proactor模式,Proactor负责 CompletionHandler的派发,查看一个典型的IO写操作的流程来看两者的区别:

     Reactor:  send(msg) -> 消息队列是否为空,如果为空  -> 向Reactor注册OP_WRITE,然后返回 -> Reactor select -> 触发Writable,通知用户线程去处理 ->先注销Writable(很多人遇到的cpu 100%的问题就在于没有注销),处理Writeable,如果没有完全写入,继续注册OP_WRITE。注意到,写入的工作还是用户线程在处理。
     Proactor: send(msg) -> 消息队列是否为空,如果为空,发起read异步调用,并注册CompletionHandler,然后返回。 -> 操作系统负责将你的消息写入,并返回结果(写入的字节数)给Proactor -> Proactor派发CompletionHandler。可见,写入的工作是操作系统在处理,无需用户线程参与。事实上在aio的API 中,AsynchronousChannelGroup就扮演了Proactor的角色

    CompletionHandler有三个方法,分别对应于处理成功、失败、被取消(通过返回的Future)情况下的回调处理:

Java代码   收藏代码
  1. public interface CompletionHandler<V,A> {  
  2.   
  3.      void completed(V result, A attachment);  
  4.   
  5.     void failed(Throwable exc, A attachment);  
  6.   
  7.      
  8.     void cancelled(A attachment);  
  9. }  
 


    其中的泛型参数V表示IO调用的结果,而A是发起调用时传入的attchment。

    在初步介绍完aio引入的类和接口后,我们看看一个典型的tcp服务端是怎么启动的,怎么接受连接并处理读和写,这里引用的代码都是yanf4j 的aio分支中的代码,可以从svn checkout,svn地址: http://yanf4j.googlecode.com/svn/branches/yanf4j-aio

    第一步,创建一个AsynchronousServerSocketChannel,创建之前先创建一个 AsynchronousChannelGroup,上文提到AsynchronousServerSocketChannel可以绑定一个 AsynchronousChannelGroup,那么通过这个AsynchronousServerSocketChannel建立的连接都将同属于一个AsynchronousChannelGroup并共享资源:

Java代码   收藏代码
  1. this.asynchronousChannelGroup = AsynchronousChannelGroup  
  2.                     .withCachedThreadPool(Executors.newCachedThreadPool(),  
  3.                             this.threadPoolSize);  

     然后初始化一个AsynchronousServerSocketChannel,通过open方法:

Java代码   收藏代码
  1. this.serverSocketChannel = AsynchronousServerSocketChannel  
  2.                 .open(this.asynchronousChannelGroup);  
 

    通过nio 2.0引入的SocketOption类设置一些TCP选项:

Java代码   收藏代码
  1. this.serverSocketChannel  
  2.                     .setOption(  
  3.                             StandardSocketOption.SO_REUSEADDR,true);  
  4. this.serverSocketChannel  
  5.                     .setOption(  
  6.                             StandardSocketOption.SO_RCVBUF,16*1024);  
 


    绑定本地地址:

Java代码   收藏代码
  1. this.serverSocketChannel  
  2.                     .bind(new InetSocketAddress("localhost",8080), 100);  
 

   
    其中的100用于指定等待连接的队列大小(backlog)。完了吗?还没有,最重要的监听工作还没开始,监听端口是为了等待连接上来以便accept产生一个AsynchronousSocketChannel来表示一个新建立的连接,因此需要发起一个accept调用,调用是异步的,操作系统将在连接建立后,将最后的结果——AsynchronousSocketChannel返回给你:

Java代码   收藏代码
  1. public void pendingAccept() {  
  2.         if (this.started && this.serverSocketChannel.isOpen()) {  
  3.             this.acceptFuture = this.serverSocketChannel.accept(null,  
  4.                     new AcceptCompletionHandler());  
  5.   
  6.         } else {  
  7.             throw new IllegalStateException("Controller has been closed");  
  8.         }  
  9.     }  
 


   注意,重复的accept调用将会抛出PendingAcceptException,后文提到的read和write也是如此。accept方法的第一个参数是你想传给CompletionHandler的attchment,第二个参数就是注册的用于回调的CompletionHandler,最后返回结果Future<AsynchronousSocketChannel>。你可以对future做处理,这里采用更推荐的方式就是注册一个CompletionHandler。那么accept的CompletionHandler中做些什么工作呢?显然一个赤裸裸的 AsynchronousSocketChannel是不够的,我们需要将它封装成session,一个session表示一个连接(mina里就叫 IoSession了),里面带了一个缓冲的消息队列以及一些其他资源等。在连接建立后,除非你的服务器只准备接受一个连接,不然你需要在后面继续调用pendingAccept来发起另一个accept请求

Java代码   收藏代码
  1. private final class AcceptCompletionHandler implements  
  2.             CompletionHandler<AsynchronousSocketChannel, Object> {  
  3.   
  4.         @Override  
  5.         public void cancelled(Object attachment) {  
  6.             logger.warn("Accept operation was canceled");  
  7.         }  
  8.   
  9.         @Override  
  10.         public void completed(AsynchronousSocketChannel socketChannel,  
  11.                 Object attachment) {  
  12.             try {  
  13.                 logger.debug("Accept connection from "  
  14.                         + socketChannel.getRemoteAddress());  
  15.                 configureChannel(socketChannel);  
  16.                 AioSessionConfig sessionConfig = buildSessionConfig(socketChannel);  
  17.                 Session session = new AioTCPSession(sessionConfig,  
  18.                         AioTCPController.this.configuration  
  19.                                 .getSessionReadBufferSize(),  
  20.                         AioTCPController.this.sessionTimeout);  
  21.                 session.start();  
  22.                 registerSession(session);  
  23.             } catch (Exception e) {  
  24.                 e.printStackTrace();  
  25.                 logger.error("Accept error", e);  
  26.                 notifyException(e);  
  27.             } finally {  
  28.                 <strong>pendingAccept</strong>();  
  29.             }  
  30.         }  
  31.   
  32.         @Override  
  33.         public void failed(Throwable exc, Object attachment) {  
  34.             logger.error("Accept error", exc);  
  35.             try {  
  36.                 notifyException(exc);  
  37.             } finally {  
  38.                 <strong>pendingAccept</strong>();  
  39.             }  
  40.         }  
  41.     }  
 

  
    注意到了吧,我们在failed和completed方法中在最后都调用了pendingAccept来继续发起accept调用,等待新的连接上来。有的同学可能要说了,这样搞是不是递归调用,会不会堆栈溢出?实际上不会,因为发起accept调用的线程与CompletionHandler回调的线程并非同一个,不是一个上下文中,两者之间没有耦合关系。要注意到,CompletionHandler的回调共用的是 AsynchronousChannelGroup绑定的线程池,因此千万别在CompletionHandler回调方法中调用阻塞或者长时间的操作,例如sleep,回调方法最好能支持超时,防止线程池耗尽。

    连接建立后,怎么读和写呢?回忆下在nonblocking nio框架中,连接建立后的第一件事是干什么?注册OP_READ事件等待socket可读。异步IO也同样如此,连接建立后马上发起一个异步read调用,等待socket可读,这个是Session.start方法中所做的事情:

Java代码   收藏代码
  1. public class AioTCPSession {  
  2.     protected void start0() {  
  3.         pendingRead();  
  4.     }  
  5.   
  6.     protected final void pendingRead() {  
  7.         if (!isClosed() && this.asynchronousSocketChannel.isOpen()) {  
  8.             if (!this.readBuffer.hasRemaining()) {  
  9.                 this.readBuffer = ByteBufferUtils  
  10.                         .increaseBufferCapatity(this.readBuffer);  
  11.             }  
  12.             this.readFuture = this.asynchronousSocketChannel.read(  
  13.                     this.readBuffer, thisthis.readCompletionHandler);  
  14.         } else {  
  15.             throw new IllegalStateException(  
  16.                     "Session Or Channel has been closed");  
  17.         }  
  18.     }  
  19.      
  20. }  
 

     AsynchronousSocketChannel的read调用与AsynchronousServerSocketChannel的accept调用类似,同样是非阻塞的,返回结果也是一个Future,但是写的结果是整数,表示写入了多少字节,因此read调用返回的是 Future<Integer>,方法的第一个参数是读的缓冲区,操作系统将IO读到数据拷贝到这个缓冲区,第二个参数是传递给 CompletionHandler的attchment,第三个参数就是注册的用于回调的CompletionHandler。这里保存了read的结果Future,这是为了在关闭连接的时候能够主动取消调用,accept也是如此。现在可以看看read的CompletionHandler的实现:

Java代码   收藏代码
  1. public final class ReadCompletionHandler implements  
  2.         CompletionHandler<Integer, AbstractAioSession> {  
  3.   
  4.     private static final Logger log = LoggerFactory  
  5.             .getLogger(ReadCompletionHandler.class);  
  6.     protected final AioTCPController controller;  
  7.   
  8.     public ReadCompletionHandler(AioTCPController controller) {  
  9.         this.controller = controller;  
  10.     }  
  11.   
  12.     @Override  
  13.     public void cancelled(AbstractAioSession session) {  
  14.         log.warn("Session(" + session.getRemoteSocketAddress()  
  15.                 + ") read operation was canceled");  
  16.     }  
  17.   
  18.     @Override  
  19.     public void completed(Integer result, AbstractAioSession session) {  
  20.         if (log.isDebugEnabled())  
  21.             log.debug("Session(" + session.getRemoteSocketAddress()  
  22.                     + ") read +" + result + " bytes");  
  23.         if (result < 0) {  
  24.             session.close();  
  25.             return;  
  26.         }  
  27.         try {  
  28.             if (result > 0) {  
  29.                 session.updateTimeStamp();  
  30.                 session.getReadBuffer().flip();  
  31.                 session.decode();  
  32.                 session.getReadBuffer().compact();  
  33.             }  
  34.         } finally {  
  35.             try {  
  36.                 session.pendingRead();  
  37.             } catch (IOException e) {  
  38.                 session.onException(e);  
  39.                 session.close();  
  40.             }  
  41.         }  
  42.         controller.checkSessionTimeout();  
  43.     }  
  44.   
  45.     @Override  
  46.     public void failed(Throwable exc, AbstractAioSession session) {  
  47.         log.error("Session read error", exc);  
  48.         session.onException(exc);  
  49.         session.close();  
  50.     }  
  51.   
  52. }  
 

   如果IO读失败,会返回失败产生的异常,这种情况下我们就主动关闭连接,通过session.close()方法,这个方法干了两件事情:关闭channel和取消read调用:

Java代码   收藏代码
  1. if (null != this.readFuture) {  
  2.             this.readFuture.cancel(true);  
  3.         }  
  4. this.asynchronousSocketChannel.close();  
 

   在读成功的情况下,我们还需要判断结果result是否小于0,如果小于0就表示对端关闭了,这种情况下我们也主动关闭连接并返回。如果读到一定字节,也就是result大于0的情况下,我们就尝试从读缓冲区中decode出消息,并派发给业务处理器的回调方法,最终通过pendingRead继续发起read调用等待socket的下一次可读。可见,我们并不需要自己去调用channel来进行IO读,而是操作系统帮你直接读到了缓冲区,然后给你一个结果表示读入了多少字节,你处理这个结果即可。而nonblocking IO框架中,是reactor通知用户线程socket可读了,然后用户线程自己去调用read进行实际读操作。这里还有个需要注意的地方,就是decode出来的消息的派发给业务处理器工作最好交给一个线程池来处理,避免阻塞group绑定的线程池。
  
   IO写的操作与此类似,不过通常写的话我们会在session中关联一个缓冲队列来处理,没有完全写入或者等待写入的消息都存放在队列中,队列为空的情况下发起write调用:

Java代码   收藏代码
  1. protected void write0(WriteMessage message) {  
  2.       boolean needWrite = false;  
  3.       synchronized (this.writeQueue) {  
  4.           needWrite = this.writeQueue.isEmpty();  
  5.           this.writeQueue.offer(message);  
  6.       }  
  7.       if (needWrite) {  
  8.           pendingWrite(message);  
  9.       }  
  10.   }  
  11.   
  12.   protected final void pendingWrite(WriteMessage message) {  
  13.       message = preprocessWriteMessage(message);  
  14.       if (!isClosed() && this.asynchronousSocketChannel.isOpen()) {  
  15.           this.asynchronousSocketChannel.write(message.getWriteBuffer(),  
  16.                   thisthis.writeCompletionHandler);  
  17.       } else {  
  18.           throw new IllegalStateException(  
  19.                   "Session Or Channel has been closed");  
  20.       }  
  21.   }  
 

    write调用返回的结果与read一样是一个Future<Integer>,而write的CompletionHandler处理的核心逻辑大概是这样:

Java代码   收藏代码
  1. @Override  
  2.     public void completed(Integer result, AbstractAioSession session) {  
  3.         if (log.isDebugEnabled())  
  4.             log.debug("Session(" + session.getRemoteSocketAddress()  
  5.                     + ") writen " + result + " bytes");  
  6.                   
  7.         WriteMessage writeMessage;  
  8.         Queue<WriteMessage> writeQueue = session.getWriteQueue();  
  9.         synchronized (writeQueue) {  
  10.             writeMessage = writeQueue.peek();  
  11.             if (writeMessage.getWriteBuffer() == null  
  12.                     || !writeMessage.getWriteBuffer().hasRemaining()) {  
  13.                 writeQueue.remove();  
  14.                 if (writeMessage.getWriteFuture() != null) {  
  15.                     writeMessage.getWriteFuture().setResult(Boolean.TRUE);  
  16.                 }  
  17.                 try {  
  18.                     session.getHandler().onMessageSent(session,  
  19.                             writeMessage.getMessage());  
  20.                 } catch (Exception e) {  
  21.                     session.onException(e);  
  22.                 }  
  23.                 writeMessage = writeQueue.peek();  
  24.             }  
  25.         }  
  26.         if (writeMessage != null) {  
  27.             try {  
  28.                 session.pendingWrite(writeMessage);  
  29.             } catch (IOException e) {  
  30.                 session.onException(e);  
  31.                 session.close();  
  32.             }  
  33.         }  
  34.     }  
 


   compete方法中的result就是实际写入的字节数,然后我们判断消息的缓冲区是否还有剩余,如果没有就将消息从队列中移除,如果队列中还有消息,那么继续发起write调用。

   重复一下,这里引用的代码都是yanf4j aio分支中的源码,感兴趣的朋友可以直接check out出来看看:http://yanf4j.googlecode.com/svn/branches/yanf4j-aio
   在引入了aio之后,java对于网络层的支持已经非常完善,该有的都有了,java也已经成为服务器开发的首选语言之一。java的弱项在于对内存的管理上,由于这一切都交给了GC,因此在高性能的网络服务器上还是Cpp的天下。java这种单一堆模型比之erlang的进程内堆模型还是有差距,很难做到高效的垃圾回收和细粒度的内存管理。

   这里仅仅是介绍了aio开发的核心流程,对于一个网络框架来说,还需要考虑超时的处理、缓冲buffer的处理、业务层和网络层的切分、可扩展性、性能的可调性以及一定的通用性要求。

目录
相关文章
|
6天前
|
Java
Java如何标记异步方法
【8月更文挑战第13天】Java如何标记异步方法
14 1
|
4天前
|
前端开发 JavaScript Java
java实现异步回调返回给前端
综上,Java中实现异步回调并将结果返回给前端是一项涉及后端异步处理和前端交互的综合任务。在实际项目中,开发人员需要根据应用需求和性能预期选择合适的异步模型与工具,并进行适当的配置和优化。
18 3
|
7天前
|
Java Android开发
解决Android编译报错:Unable to make field private final java.lang.String java.io.File.path accessible
解决Android编译报错:Unable to make field private final java.lang.String java.io.File.path accessible
25 1
|
11天前
|
存储 缓存 Java
15 Java IO流(File类+IO流+字节流+字符流+字节编码)
15 Java IO流(File类+IO流+字节流+字符流+字节编码)
34 3
|
13天前
|
前端开发 Java UED
java实现异步回调返回给前端
通过以上的方式,可以优雅地在Java中实现异步回调并将结果返回给前端,大大提升了应用程序的响应能力和用户体验。
25 1
|
19天前
|
安全 Java Linux
(七)Java网络编程-IO模型篇之从BIO、NIO、AIO到内核select、epoll剖析!
IO(Input/Output)方面的基本知识,相信大家都不陌生,毕竟这也是在学习编程基础时就已经接触过的内容,但最初的IO教学大多数是停留在最基本的BIO,而并未对于NIO、AIO、多路复用等的高级内容进行详细讲述,但这些却是大部分高性能技术的底层核心,因此本文则准备围绕着IO知识进行展开。
|
6天前
|
安全 Java 网络安全
云计算时代下的网络安全挑战与应对策略Java编程中的异常处理:从基础到高级
在云服务不断深入各行各业的今天,网络安全问题也随之凸显。本文将探讨云计算环境下的安全风险,并提出相应的防护措施,以期为相关行业提供参考和指导。 在Java的世界里,异常处理是代码健壮性的守护神。它不仅保护程序免于意外崩溃,还提供了一种优雅的方式来响应错误。本文将带你领略异常处理的艺术,从简单的try-catch语句到复杂的自定义异常和finally块的神秘力量,我们将一起探索如何让Java程序在面对不确定性时,依然能够优雅地起舞。
|
1月前
|
开发框架 并行计算 算法
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
【7月更文挑战第18天】Python并发编程中,异步IO适合IO密集型任务,如异步HTTP请求,利用`asyncio`和`aiohttp`实现并发抓取,避免等待延迟。而对于CPU密集型任务,如并行计算斐波那契数列,多进程通过`multiprocessing`库能绕过GIL限制实现并行计算。选择正确的并发模型能显著提升性能。
45 2
|
19天前
|
存储 Java Unix
(八)Java网络编程之IO模型篇-内核Select、Poll、Epoll多路复用函数源码深度历险!
select/poll、epoll这些词汇相信诸位都不陌生,因为在Redis/Nginx/Netty等一些高性能技术栈的底层原理中,大家应该都见过它们的身影,接下来重点讲解这块内容。
|
29天前
|
数据采集 算法 数据处理
Python中的并发编程:异步IO与多线程对比分析
传统的多线程编程在Python中因为全局解释器锁(GIL)的存在受到限制,导致多线程并不能充分利用多核处理器的优势。本文将探讨Python中的异步IO编程与多线程编程的差异与优劣,并分析适合的应用场景。