apache kafka系列之在zookeeper中存储结构

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: apache kafka中国社区QQ群:162272557 1.topic注册信息 /brokers/topics/[topic] : 存储某个topic的partitions所有分配信息 Schema: {     "version": "版本编号目前固定为数字1",     "partitions": {    

apache kafka中国社区QQ群:162272557

1.topic注册信息

/brokers/topics/[topic] :

存储某个topic的partitions所有分配信息

Schema:
{
    "version": "版本编号目前固定为数字1",
    "partitions": {
        "partitionId编号": [
            同步副本组brokerId列表
        ],
        "partitionId编号": [
            同步副本组brokerId列表
        ],
        .......
    }
}
Example:
{
"version": 1,
"partitions": {
"0": [1, 2],
"1": [2, 1],
"2": [1, 2],
}
}

说明:紫红色为patitions编号,蓝色为同步副本组brokerId列表

2.partition状态信息

/brokers/topics/[topic]/partitions/[0...N]  其中[0..N]表示partition索引号

/brokers/topics/[topic]/partitions/[partitionId]/state

Schema:
{
"controller_epoch": 表示kafka集群中的中央控制器选举次数,
"leader": 表示该partition选举leader的brokerId,
"version": 版本编号默认为1,
"leader_epoch": 该partition leader选举次数,
"isr": [同步副本组brokerId列表]
}
 
Example:
{
"controller_epoch": 1,
"leader": 2,
"version": 1,
"leader_epoch": 0,
"isr": [2, 1]

}

3. Broker注册信息

/brokers/ids/[0...N]                 

每个broker的配置文件中都需要指定一个数字类型的id(全局不可重复),此节点为临时znode(EPHEMERAL)

Schema:
{
"jmx_port": jmx端口号,
"timestamp": kafka broker初始启动时的时间戳,
"host": 主机名或ip地址,
"version": 版本编号默认为1,
"port": kafka broker的服务端端口号,由server.properties中参数port确定

}
 
Example:
{
"jmx_port": 6061,
"timestamp":"1403061899859"
"version": 1,
"host": "192.168.1.148",
"port": 9092

}

4. Controller epoch: 

/controller_epoch -> int (epoch)   

此值为一个数字,kafka集群中第一个broker第一次启动时为1,以后只要集群中center controller中央控制器所在broker变更或挂掉,就会重新选举新的center controller,每次center controller变更controller_epoch值就会 + 1; 

5. Controller注册信息:

/controller -> int (broker id of the controller)  存储center controller中央控制器所在kafka broker的信息

Schema:
{
"version": 版本编号默认为1,
"brokerid": kafka集群中broker唯一编号,
"timestamp": kafka broker中央控制器变更时的时间戳

}
 
Example:
{
"version": 1,
"brokerid": 3,
"timestamp": "1403061802981"
}


Consumer and Consumer group概念: 
a.每个consumer客户端被创建时,会向zookeeper注册自己的信息;
b.此作用主要是为了"负载均衡".
c.同一个Consumer Group中的Consumers,Kafka将相应Topic中的每个消息只发送给其中一个Consumer。
d.Consumer Group中的每个Consumer读取Topic的一个或多个Partitions,并且是唯一的Consumer;
e.一个Consumer group的多个consumer的所有线程依次有序地消费一个topic的所有partitions,如果Consumer group中所有consumer总线程大于partitions数量,则会出现空闲情况;
举例说明:
kafka集群中创建一个topic为report-log   4 partitions 索引编号为0,1,2,3
假如有目前有三个消费者node:注意-->一个consumer中一个消费线程可以消费一个或多个partition.
如果每个consumer创建一个consumer thread线程,各个node消费情况如下,node1消费索引编号为0,1分区,node2费索引编号为2,node3费索引编号为3
如果每个consumer创建2个consumer thread线程,各个node消费情况如下(是从consumer node先后启动状态来确定的),node1消费索引编号为0,1分区;node2费索引编号为2,3;node3为空闲状态
总结
从以上可知,Consumer Group中各个consumer是根据先后启动的顺序有序消费一个topic的所有partitions的。
如果Consumer Group中所有consumer的总线程数大于partitions数量,则可能consumer thread或consumer会出现空闲状态。

Consumer均衡算法
当一个group中,有consumer加入或者离开时,会触发partitions均衡.均衡的最终目的,是提升topic的并发消费能力.
1) 假如topic1,具有如下partitions: P0,P1,P2,P3
2) 加入group中,有如下consumer: C0,C1
3) 首先根据partition索引号对partitions排序: P0,P1,P2,P3
4) 根据(consumer.id + '-'+ thread序号)排序: C0,C1
5) 计算倍数: M = [P0,P1,P2,P3].size / [C0,C1].size,本例值M=2(向上取整)
6) 然后依次分配partitions: C0 = [P0,P1],C1=[P2,P3],即Ci = [P(i * M),P((i + 1) * M -1)]

6. Consumer注册信息:

每个consumer都有一个唯一的ID(consumerId可以通过配置文件指定,也可以由系统生成),此id用来标记消费者信息.

/consumers/[groupId]/ids/[consumerIdString]

是一个临时的znode,此节点的值为请看consumerIdString产生规则,即表示此consumer目前所消费的topic + partitions列表.

consumerId产生规则:

   StringconsumerUuid = null;
    if(config.consumerId!=null && config.consumerId)
      consumerUuid = consumerId;
    else {
      String uuid = UUID.randomUUID()
      consumerUuid = "%s-%d-%s".format(
        InetAddress.getLocalHost.getHostName, System.currentTimeMillis,
        uuid.getMostSignificantBits().toHexString.substring(0,8));

     }
     String consumerIdString = config.groupId + "_" + consumerUuid;

Schema:
{
"version": 版本编号默认为1,
"subscription": { //订阅topic列表
"topic名称": consumer中topic消费者线程数
},
"pattern": "static",
"timestamp": "consumer启动时的时间戳"

}
 
Example:
{
"version": 1,
"subscription": {
"open_platform_opt_push_plus1": 5
},
"pattern": "static",
"timestamp": "1411294187842"

}

 

7. Consumer owner:

/consumers/[groupId]/owners/[topic]/[partitionId] -> consumerIdString + threadId索引编号

当consumer启动时,所触发的操作:

a) 首先进行"Consumer Id注册";

b) 然后在"Consumer id 注册"节点下注册一个watch用来监听当前group中其他consumer的"退出"和"加入";只要此znode path下节点列表变更,都会触发此group下consumer的负载均衡.(比如一个consumer失效,那么其他consumer接管partitions).

c) 在"Broker id 注册"节点下,注册一个watch用来监听broker的存活情况;如果broker列表变更,将会触发所有的groups下的consumer重新balance.

8. Consumer offset:

/consumers/[groupId]/offsets/[topic]/[partitionId] -> long (offset)

用来跟踪每个consumer目前所消费的partition中最大的offset

此znode为持久节点,可以看出offset跟group_id有关,以表明当消费者组(consumer group)中一个消费者失效,

重新触发balance,其他consumer可以继续消费.

9. Re-assign partitions

/admin/reassign_partitions

{
    "fields":[
      {
         "name":"version",
         "type":"int",
         "doc":"version id"
      },
      {
         "name":"partitions",
         "type":{
            "type":"array",
            "items":{
               "fields":[
                  {
                     "name":"topic",
                     "type":"string",
                     "doc":"topic of the partition to be reassigned"
                  },
                  {
                     "name":"partition",
                     "type":"int",
                     "doc":"the partition to be reassigned"
                  },
                  {
                     "name":"replicas",
                     "type":"array",
                     "items":"int",
                     "doc":"a list of replica ids"
                  }
               ],
            }
            "doc":"an array of partitions to be reassigned to new replicas"
         }
      }
   ]
}
 
Example:
{
  "version"1,
  "partitions":
     [
        {
            "topic""Foo",
            "partition"1,
            "replicas": [013]
        }
     ]            
}

 

10. Preferred replication election

/admin/preferred_replica_election

 

{
   "fields":[
      {
         "name":"version",
         "type":"int",
         "doc":"version id"
      },
      {
         "name":"partitions",
         "type":{
            "type":"array",
            "items":{
               "fields":[
                  {
                     "name":"topic",
                     "type":"string",
                     "doc":"topic of the partition for which preferred replica election should be triggered"
                  },
                  {
                     "name":"partition",
                     "type":"int",
                     "doc":"the partition for which preferred replica election should be triggered"
                  }
               ],
            }
            "doc":"an array of partitions for which preferred replica election should be triggered"
         }
      }
   ]
}
 
例子:
 
{
  "version"1,
  "partitions":
     [
        {
            "topic""Foo",
            "partition"1         
        },
        {
            "topic""Bar",
            "partition"0         
        }
     ]            
}

 

11. 删除topics
/admin/delete_topics

Schema:
"fields":
    [ {"name""version""type""int""doc""version id"},
      {"name""topics",
       "type": { "type""array""items""string""doc""an array of topics to be deleted"}
      } ]
}
 
例子:
{
  "version"1,
  "topics": ["foo""bar"]
}

Topic配置

/config/topics/[topic_name]

例子

{
  "version"1,
  "config": {
    "config.a""x",
    "config.b""y",
    ...
   }
}

【本文转载自apache kafka系列之在zookeeper中存储结构

目录
相关文章
|
19天前
|
消息中间件 安全 Kafka
Apache Kafka安全加固指南:保护你的消息传递系统
【10月更文挑战第24天】在现代企业环境中,数据的安全性和隐私保护至关重要。Apache Kafka作为一款广泛使用的分布式流处理平台,其安全性直接影响着业务的稳定性和用户数据的安全。作为一名资深的Kafka使用者,我深知加强Kafka安全性的重要性。本文将从个人角度出发,分享我在实践中积累的经验,帮助读者了解如何有效地保护Kafka消息传递系统的安全性。
46 7
|
19天前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
64 5
|
19天前
|
消息中间件 存储 监控
构建高可用性Apache Kafka集群:从理论到实践
【10月更文挑战第24天】随着大数据时代的到来,数据传输与处理的需求日益增长。Apache Kafka作为一个高性能的消息队列服务,因其出色的吞吐量、可扩展性和容错能力而受到广泛欢迎。然而,在构建大规模生产环境下的Kafka集群时,保证其高可用性是至关重要的。本文将从个人实践经验出发,详细介绍如何构建一个高可用性的Kafka集群,包括集群规划、节点配置以及故障恢复机制等方面。
51 4
|
19天前
|
消息中间件 监控 大数据
优化Apache Kafka性能:最佳实践与调优策略
【10月更文挑战第24天】作为一名已经对Apache Kafka有所了解并有实际使用经验的开发者,我深知在大数据处理和实时数据流传输中,Kafka的重要性不言而喻。然而,在面对日益增长的数据量和业务需求时,如何保证系统的高性能和稳定性成为了摆在我们面前的一个挑战。本文将从我的个人视角出发,分享一些关于如何通过合理的配置和调优来提高Kafka性能的经验和建议。
50 4
|
1月前
|
消息中间件 运维 算法
Kafka 为什么要抛弃 Zookeeper?
本文探讨了Kafka为何逐步淘汰ZooKeeper。长久以来,ZooKeeper作为Kafka的核心组件,负责集群管理和协调任务。然而,随着Kafka的发展,ZooKeeper带来的复杂性增加、性能瓶颈及一致性问题日益凸显。为解决这些问题,Kafka引入了KRaft,这是一种基于Raft算法的内置元数据管理方案,不仅简化了部署流程,还提升了系统的一致性和扩展性。本文详细分析了这一转变背后的原因及其带来的优势,并展望了Kafka未来的发展方向。
105 1
|
19天前
|
消息中间件 Java Kafka
初识Apache Kafka:搭建你的第一个消息队列系统
【10月更文挑战第24天】在数字化转型的浪潮中,数据成为了企业决策的关键因素之一。而高效的数据处理能力,则成为了企业在竞争中脱颖而出的重要武器。在这个背景下,消息队列作为连接不同系统和服务的桥梁,其重要性日益凸显。Apache Kafka 是一款开源的消息队列系统,以其高吞吐量、可扩展性和持久性等特点受到了广泛欢迎。作为一名技术爱好者,我对 Apache Kafka 产生了浓厚的兴趣,并决定亲手搭建一套属于自己的消息队列系统。
41 2
初识Apache Kafka:搭建你的第一个消息队列系统
|
19天前
|
消息中间件 存储 负载均衡
Apache Kafka核心概念解析:生产者、消费者与Broker
【10月更文挑战第24天】在数字化转型的大潮中,数据的实时处理能力成为了企业竞争力的重要组成部分。Apache Kafka 作为一款高性能的消息队列系统,在这一领域占据了重要地位。通过使用 Kafka,企业可以构建出高效的数据管道,实现数据的快速传输和处理。今天,我将从个人的角度出发,深入解析 Kafka 的三大核心组件——生产者、消费者与 Broker,希望能够帮助大家建立起对 Kafka 内部机制的基本理解。
49 2
|
1月前
|
消息中间件 监控 Kafka
Apache Kafka 成为实时数据流处理的关键组件
【10月更文挑战第8天】随着大数据技术的发展,Apache Kafka 成为实时数据流处理的关键组件。Kafka Manager 提供了一个简洁易用的 Web 界面,方便管理和监控 Kafka 集群。本文详细介绍了 Kafka Manager 的部署步骤和基本使用方法,包括配置文件修改、启动服务、创建和管理 Topic 等操作,帮助你快速上手。
48 3
|
17天前
|
消息中间件 Ubuntu Java
Ubuntu系统上安装Apache Kafka
Ubuntu系统上安装Apache Kafka
|
18天前
|
消息中间件 监控 Kafka
Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面
随着大数据技术的发展,Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面,方便管理和监控 Kafka 集群。本文详细介绍了 Kafka Manager 的部署步骤和基本使用方法,包括配置文件的修改、启动命令、API 示例代码等,帮助你快速上手并有效管理 Kafka 集群。
39 0

推荐镜像

更多