Python机器学习(二):线性回归算法

简介: 机器学习研究的问题分为分类问题和回归问题。分类问题很好理解,而回归问题就是找到一条曲线,可以最大程度地拟合样本特征和样本输出标记之间的关系。当给算法一个输入时,这条曲线可以计算出相应可能的输出。

机器学习研究的问题分为分类问题回归问题。分类问题很好理解,而回归问题就是找到一条曲线,可以最大程度地拟合样本特征和样本输出标记之间的关系。当给算法一个输入时,这条曲线可以计算出相应可能的输出。回归算法最简单的就是线性回归。当样本特征只有一个时,称为简单线性回归;当样本特征有多个时,称为多元线性回归

img_09c23661093aebe566d5eb47705df8d4.png
线性回归

1.简单线性回归

由上图可知,简单线性回归只有一个特征x,一个标记y。假定x和y之间具有类似于线性的关系,就可以使用使用简单线性回归算法。假定我们找到了最佳拟合的直线方程

img_ea32a3521da780f2f384daf605473be5.png
最佳拟合的直线方程

则对于每一个样本点x(i),预测值如下。其中带箭头的y是预测值,称为 y head。右上角的 i 是指样本的索引。
img_e043034d0d842d41ec8e4075db66931d.png
预测值

我们希望预测值和真实值之间的差距尽量小。一般用欧氏距离来衡量。下式称为 损失函数(Loss Function)
img_2e8e0edfd16577ee12a048e4e5171252.png
损失函数

换句话说,我们的目标就是找到一组a和b,使得下式最小
img_e95b555f81a9a6b93a5f676a916aaa98.png
y(i)和x(i)是固定的

通过分析不同的问题,我们需要确定问题的损失函数。通过最优化损失函数,获得机器学习的模型。几乎所有的参数学习算法都是这样的套路

那么这个问题是一个典型的最小二乘法问题,即最小化误差的平方。推导可得以下公式


img_25d1aea6c77680e4460c98bfe599f664.png
最小二乘法

可以用python封装成这种形式

"""
Created by 杨帮杰 on 10/1/18
Right to use this code in any way you want without
warranty, support or any guarantee of it working
E-mail: yangbangjie1998@qq.com
Association: SCAU 华南农业大学
"""

import numpy as np

class SimpleLinearRegression:

    def __init__(self):
        """初始化Simple Linear Regression 模型"""
        self.a_ = None
        self.b_ = None

    def fit(self, x_train, y_train):
        """根据训练数据集x_train,y_train训练Simple Linear Regression 模型"""
        assert x_train.nidm == 1, \
            "Simple Linear Regressor can only solve single feature training data."
        assert len(x_train) == len(y_train), \
            "the size of x_train must be equal to the size of y_train"

        x_mean = np.mean(x_train)
        y_mean = np.mean(y_train)

        """进行向量化可以加快训练速度"""
        # num = 0.0
        # d = 0.0
        # for x, y in zip(x_train, y_train):
        #     num += (x - x_mean) * (y - y_mean)
        #     d += (x - x_mean) ** 2

        num = (x_train - x_mean).dot(y_train - y_mean)
        d = (x_train - x_mean).dot(x_train - x_mean)

        self.a_ = num/d
        self.b_ = y_mean - self.a_ * x_mean

        return self

    def predict(self, x_predict):
        """给定待预测数据集x_predict, 返回表示x_predict的结果向量"""
        assert x_predict.ndim == 1, \
            "Simeple Linear Regressor can only solve single feature training data."
        assert self.a_ is not None and self.b_ is not None, \
            "must fit before predict!"

        return np.array([self._predict(x) for x in x_predict])

    def _predict(self, x_single):
        """给定单个待预测数据x_single, 返回x_single的预测结果值"""
        return self.a_ * x_single + self.b_

    def __repr__(self):
        return "SimpleLinearRegression()"

衡量线性回归模型好坏有多个标准,均方误差(Mean Squared Error)、均方根误差(Root Mean Squared Error)、平均绝对误差(Mean Absolute Error)等。一般使用MSE。


img_a7b0d4f92723348421b4e40497f85ac8.png
均方误差MSE
img_10eae95b8954fdd08825e96ef06bcbee.png
均方根误差RMSE

img_5841879e1219ceeca0f1c30d8045f3ce.png
平均绝对误差MAE

而如果想像分类问题一样将评判得分限制在0和1之间,则应该使用R Square

img_7cb8a42ca0d772b3549d7ed266d7381c.png
R Square

右边一项的分子代表使用模型产生的错误,分母代表使用平均值进行预测产生的错误。分母也可以理解为一个模型,称为 Baseline Model

R Square的输出分为以下几种情况:

  • R^2 = 1,则模型不犯任何错误,完美
  • R^2 = 0,模型为基准模型,相当于没训练过
  • R^2 < 0,数据可能不存在任何线性关系

2.多元线性回归

多元线性回归,就是指样本特征值有多个。根据这多个特征值来预测样本的标记值。那么特征X和参数Θ就是一个向量。

img_2f78c1093556260e3032fbf287060e46.png
多元线性回归

相类似地,我们需要找到一个损失函数。我们需要找到一组参数Θ,使下式尽可能小


img_8f70459b6b81f09d5edbc6d2fd22488c.png
损失函数

img_5295623fe026b18cb28c8ae6d0910148.png
预测值有n个参数

为了方便进行矩阵运算,我们写成这种形式


img_6a8d455e9d2f81eec6c2546375a1cc9d.png
X0不是特征输入!

预测值可以写成这种形式


img_7978f9c054ce549034a6348ca1fc40b2.png
预测值和参数是n维向量,X是n维矩阵

X展开是这个样子。每一行是一个样本点,每一列(除了第一列)是一种特征
img_726925cd9e768cec00c83e3b4307cf7d.png
展开

经过推导,得到这样一个公式。这成为多元线性回归的正规方程解(Normal Equation)。结果就是参数向量。

img_dd546671996d6e29cfc4255510cf4eb1.png
我也不知道怎么来的

img_527459709419fdb5637bb1e87da89394.png
Θ0就是简单线性回归中的b

如上,可以封装成这种形式

"""
Created by 杨帮杰 on 10/1/18
Right to use this code in any way you want without
warranty, support or any guarantee of it working
E-mail: yangbangjie1998@qq.com
Association: SCAU 华南农业大学
"""

import numpy as np

class LinearRegression:

    def __init__(self):
        """初始化Linear Regression模型"""
        self.coef_ = None
        self.interception_ = None
        self._theta = None

    def fit_normal(self, X_train, y_train):
        """根据训练数据集X_train, y_train训练Linear Regression模型"""
        assert X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"

        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)

        self.interception_ = self._theta[0]
        self.coef_ = self._theta[1:]

        return self

    def predict(self, X_predict):
        """给定待预测数据集X_predict, 返回表示X_predict的结果向量"""
        assert self.interception_ is not None and self.coef_ is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == len(self.coef_), \
            "the feature number of X_predict must be equal to X_train"

        X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])

        return X_b.dot(self._theta)

    def __repr__(self):
        return "LinearRegression()"

sciki-learn中使用线性回归如下

"""
Created by 杨帮杰 on 10/1/18
Right to use this code in any way you want without
warranty, support or any guarantee of it working
E-mail: yangbangjie1998@qq.com
Association: SCAU 华南农业大学
"""

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

# 加载波士顿房价的数据集
boston = datasets.load_boston()

# 清除一些不合理的数据
X = boston.data
y = boston.target

X = X[y < 50.0]
y = y[y < 50.0]

# 分离出测试集并拟合
X_train, X_test, y_train, y_test = train_test_split(X, y)

lin_reg = LinearRegression()

lin_reg.fit(X_train, y_train)

# 打印结果
print(lin_reg.coef_)
print(lin_reg.intercept_)
print(lin_reg.score(X_test, y_test))

输出如下

img_479057ecfa5ede8287bcf0591264d891.png
打印结果

3.总结

线性回归是许多其他回归和分类问题的基础。

它最大的优点是对数据具有很强的解释性。比如某一项的参数是正数,那么很可能这个特征和样本标记之间成正相关,反之成负相关。

优点:

  1. 思想简单,实现容易
  2. 是许多非线性模型的基础
  3. 具有很好的可解释性

缺点:

  1. 假设特征和标记之间有线性关系,现实中不一定
  2. 训练的时间复杂度比较高

References:
Python3 入门机器学习 经典算法与应用 —— liuyubobobo
机器学习实战 —— Peter Harrington

目录
相关文章
|
22天前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
42 0
|
23天前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
44 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
4天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
10 3
|
9天前
|
机器学习/深度学习 数据可视化 Python
使用最小二乘法进行线性回归(Python)
【10月更文挑战第28天】本文介绍了使用Python实现最小二乘法进行线性回归的步骤,包括数据准备、计算均值、计算斜率和截距、构建线性回归方程以及预测和可视化结果。通过示例代码展示了如何从创建数据点到最终绘制回归直线的完整过程。
|
7天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
20 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
12天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
20天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
43 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
4天前
|
机器学习/深度学习 数据采集 算法
探索机器学习中的线性回归
【10月更文挑战第25天】本文将深入浅出地介绍线性回归模型,一个在机器学习领域中广泛使用的预测工具。我们将从理论出发,逐步引入代码示例,展示如何利用Python和scikit-learn库实现一个简单的线性回归模型。文章不仅适合初学者理解线性回归的基础概念,同时也为有一定基础的读者提供实践指导。
|
21天前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
27 0
|
6月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
233 14