Memcached源码分析 - 网络模型(1)

简介: Memcached源码分析 - 网络模型(1)Memcached源码分析 - 命令解析(2)Memcached源码分析 - 数据存储(3)Memcached源码分析 - 增删改查操作(4)Memcached源码分析 - 内存存储机制Slabs(5)Me...

Memcached源码分析 - 网络模型(1)
Memcached源码分析 - 命令解析(2)
Memcached源码分析 - 数据存储(3)
Memcached源码分析 - 增删改查操作(4)
Memcached源码分析 - 内存存储机制Slabs(5)
Memcached源码分析 - LRU淘汰算法(6)
Memcached源码分析 - 消息回应(7)

开篇

 写Memcached的目的很简单,就是想搞清楚和redis在多线程处理方面的差异,结果发现它的代码虽然是用C语言实现的,但是看起来一点也不吃力,而且有了很多很专业的大咖前辈的文章可以参考,所以萌生了写这个系列的冲动。
 其实mybatis的系列还没完结呢,不过看源码也可以随意一点,两个系列来回穿插着看似乎也是可行的,当然一贯本着尊重原创的原则,我会把参考文章在博文的最后列出来,供大家参考前辈大拿的精华。


Memcached网络模型

  • 1.Memcached主要是基于Libevent 网络事件库进行开发的。

  • 2.Memcached的网络模型分为两部分:主线程和工作线程。主线程主要用来接收客户端的连接信息;工作线程主要用来接管客户端连接,处理具体的业务逻辑。默认情况下会开启8个工作线程。

    1. 主线程和工作线程之间主要是通过pipe管道来进行通信。当主线程接收到客户端的连接的时候,会通过轮询的方式选择一个工作线程,然后向该工作线程的管道pipe写数据。工作线程监听到管道中有数据写入的时候,就会触发代码逻辑去接管客户端的连接。
    1. 每个工作线程也是基于Libevent的事件机制,当客户端有数据写入的时候,就会触发读取的操作。


      img_4f998e5360f22609b80367cb39415de3.png
      Memcached网络模型.png


libevent的知识铺垫

 因为在Memcached的代码实现当中,清一色用到libevent的实现,所以先安利一波简单知识铺垫,后面所有的libevent相关的逻辑就往这个案例上面去靠近就可以了。整个步骤是:

  • 1.pEventBase =event_init(); 初始化libevent库
  • 2.event_set(&event , sock, EV_READ | EV_PERSIST, MyCallBack, (void*)0 ); 赋值 struct event结构
  • 3.event_base_set(pEventBase, &event); 修改struct event事件结构所属的event_base为指定的event_base
  • 4.event_add(&event, 0); 增加事件到事件监控中
  • 5.event_base_loop(pEventBase, 0); 事件循环。调用底层的select、poll或epoll等,如监听事件发生,调用事件结构中指定的回调函数
//事件回调处理函数

static void MyCallBack(const int fd, constshort which, void *arg) {}
 

Int main(int argc, char** argv)
{
       //初始化libevent
       struct event_base *pEventBase;
       pEventBase =event_init();
       intsock=socket(……);
      
       struct event event;
       event_set(&event , sock, EV_READ | EV_PERSIST, MyCallBack, (void*)0 );
       event_base_set(pEventBase, &event);
       event_add(&event, 0);
       event_base_loop(pEventBase, 0);
       
      return 0;
}


主线程初始化逻辑

 Memcached主线程的初始化逻辑比较简单,主要作用是启动监听的master线程工作的worker线程。,其中启动worker线程通过memcached_thread_init函数进行实现,这部分逻辑分析在worker线程初始化当中进行分析,这里主要分析监听的master线程。
 整个master线程的启动过程就是socket的server端初始化结合libevent的初始化。整个过程如下:

  • server_sockets,该方法主要是遍历所有listen的socket列表并逐个进行绑定。
  • server_socket,该方法主要是操作单个socket到listen状态。
  • conn_new,将socket注册到libevent当中。
  • event_handler,监听socket的回调函数。
  • 最后event_base_loop让整个libevent进行循环工作状态。
int main (int argc, char **argv) {
  
  #if defined(LIBEVENT_VERSION_NUMBER) && LIBEVENT_VERSION_NUMBER >= 0x02000101
    struct event_config *ev_config;
    ev_config = event_config_new();
    event_config_set_flag(ev_config, EVENT_BASE_FLAG_NOLOCK);
    main_base = event_base_new_with_config(ev_config);
    event_config_free(ev_config);
  #else
    /* Otherwise, use older API */
    main_base = event_init();
  #endif

  #ifdef EXTSTORE
    slabs_set_storage(storage);
    memcached_thread_init(settings.num_threads, storage);
    init_lru_crawler(storage);
  #else
    memcached_thread_init(settings.num_threads, NULL);
    init_lru_crawler(NULL);
  #endif


 if (settings.port && server_sockets(settings.port, tcp_transport,
                                           portnumber_file)) {
            vperror("failed to listen on TCP port %d", settings.port);
            exit(EX_OSERR);
        }

 /* enter the event loop */
 if (event_base_loop(main_base, 0) != 0) {
        retval = EXIT_FAILURE;
    }
}



 解析参数并把遍历所有的监听socket进行绑定。执行方法server_socket(p, the_port, transport, portnumber_file)。

static int server_sockets(int port, enum network_transport transport,
                          FILE *portnumber_file) {
    if (settings.inter == NULL) {
        return server_socket(settings.inter, port, transport, portnumber_file);
    } else {
        // tokenize them and bind to each one of them..
        char *b;
        int ret = 0;
        char *list = strdup(settings.inter);
        for (char *p = strtok_r(list, ";,", &b);
            ret |= server_socket(p, the_port, transport, portnumber_file);
        }
        free(list);
        return ret;
    }
}



 针对单个listen的socket的初始化过程,这里主要做的事情是socket的相关初始化过程,主要是指设置socket相关的一些参数;进行socket的bind操作;通过方法conn_new关联socket和libevent当中。

static int server_socket(const char *interface,
                         int port,
                         enum network_transport transport,
                         FILE *portnumber_file) {
    int sfd;
    struct linger ling = {0, 0};
    struct addrinfo *ai;
    struct addrinfo *next;
    struct addrinfo hints = { .ai_flags = AI_PASSIVE,
                              .ai_family = AF_UNSPEC };
    char port_buf[NI_MAXSERV];
    int error;
    int success = 0;
    int flags =1;

    for (next= ai; next; next= next->ai_next) {
        conn *listen_conn_add;
        if ((sfd = new_socket(next)) == -1) {
            continue;
        }

        //todo 设置socket相关的属性,这里省略相关代码

        // 绑定socket,省略相关代码
        if (bind(sfd, next->ai_addr, next->ai_addrlen) == -1) {}

        // 暂时只关心TCP协议的,忽略UDP协议实现
        if (IS_UDP(transport)) {
        } else {
            if (!(listen_conn_add = conn_new(sfd, conn_listening,
                                             EV_READ | EV_PERSIST, 1,
                                             transport, main_base))) {
                fprintf(stderr, "failed to create listening connection\n");
                exit(EXIT_FAILURE);
            }
            listen_conn_add->next = listen_conn;
            listen_conn = listen_conn_add;
        }
    }

    freeaddrinfo(ai);

    /* Return zero iff we detected no errors in starting up connections */
    return success == 0;
}



 conn_new内部就是执行libevent相关的配置,包括event_set和event_base_set,这里需要关注的是event_set当中绑定了回调函数event_handler,用于连接到来后执行的逻辑。

conn *conn_new(const int sfd, enum conn_states init_state,
                const int event_flags,
                const int read_buffer_size, enum network_transport transport,
                struct event_base *base) {
    conn *c;
    c = conns[sfd];

    // libevent相关的设置
    event_set(&c->event, sfd, event_flags, event_handler, (void *)c);
    event_base_set(base, &c->event);
    c->ev_flags = event_flags;

    if (event_add(&c->event, 0) == -1) {
        perror("event_add");
        return NULL;
    }

    STATS_LOCK();
    stats_state.curr_conns++;
    stats.total_conns++;
    STATS_UNLOCK();

    MEMCACHED_CONN_ALLOCATE(c->sfd);

    return c;
}



 回调函数event_handler的核心在于drive_machine,这个函数是整个Memcached的状态转移中心,所有的操作都通过drive_machine进行驱动来实现的。

void event_handler(const int fd, const short which, void *arg) {
    conn *c;

    c = (conn *)arg;
    assert(c != NULL);

    c->which = which;

    /* sanity */
    if (fd != c->sfd) {
        if (settings.verbose > 0)
            fprintf(stderr, "Catastrophic: event fd doesn't match conn fd!\n");
        conn_close(c);
        return;
    }

    drive_machine(c);
    return;
}


工作线程worker的初始化逻辑

 memcached_thread_init主要用于工作线程worker的初始化,核心的三个操作主要是:

  • 初始化master线程和worker线程通信的pipe管道,pipe(fds)
  • setup_thread,主要用于设置工作线程libevent相关的参数。
  • create_worker,主要是启动工作线程开始循环处理工作。
void memcached_thread_init(int nthreads, void *arg) {
    int         i;
    
    // 初始化所有工作线程的pipe的fds
    for (i = 0; i < nthreads; i++) {
        int fds[2];
        if (pipe(fds)) {}
        threads[i].notify_receive_fd = fds[0];
        threads[i].notify_send_fd = fds[1];
        threads[i].storage = arg;

        // 初始化线程对应的libevent事件
        setup_thread(&threads[i]);
        stats_state.reserved_fds += 5;
    }

    // 每个线程进入libevent的事件循环当中
    for (i = 0; i < nthreads; i++) {
        create_worker(worker_libevent, &threads[i]);
    }
}



 setup_thread内部主要是初始化工作线程worker的libevent相关参数,这里我们重点关注包括:

  • 回调函数thread_libevent_process。
  • 初始化master线程和worker线程通信的队列cq_init(me->new_conn_queue)。
static void setup_thread(LIBEVENT_THREAD *me) {
    me->base = event_init();
    event_set(&me->notify_event, me->notify_receive_fd,
              EV_READ | EV_PERSIST, thread_libevent_process, me);
    event_base_set(me->base, &me->notify_event);

    if (event_add(&me->notify_event, 0) == -1) {
        fprintf(stderr, "Can't monitor libevent notify pipe\n");
        exit(1);
    }

    me->new_conn_queue = malloc(sizeof(struct conn_queue));
    if (me->new_conn_queue == NULL) {
        perror("Failed to allocate memory for connection queue");
        exit(EXIT_FAILURE);
    }

    cq_init(me->new_conn_queue);
}



 create_worker主要是启动工作线程worker使其开始工作就可以了。

  • create_worker(worker_libevent, &threads[i])传入函数是worker_libevent
  • 通过pthread_create方法触发worker_libevent的工作
  • 在worker_libevent方法内部通过event_base_loop最终使得libevent开始工作。
static void create_worker(void *(*func)(void *), void *arg) {
    pthread_attr_t  attr;
    int             ret;

    pthread_attr_init(&attr);

    if ((ret = pthread_create(&((LIBEVENT_THREAD*)arg)->thread_id, &attr, func, arg)) 
                                            != 0) {}
}

static void *worker_libevent(void *arg) {
    LIBEVENT_THREAD *me = arg;
    register_thread_initialized();
    event_base_loop(me->base, 0);
    event_base_free(me->base);
    return NULL;
}


typedef struct {
    pthread_t thread_id;        /* unique ID of this thread */
    struct event_base *base;    /* libevent handle this thread uses */
    struct event notify_event;  /* listen event for notify pipe */
    int notify_receive_fd;      /* receiving end of notify pipe */
    int notify_send_fd;         /* sending end of notify pipe */
    struct thread_stats stats;  /* Stats generated by this thread */
    struct conn_queue *new_conn_queue; /* queue of new connections to handle */
    cache_t *suffix_cache;      /* suffix cache */
    logger *l;                  /* logger buffer */
    void *lru_bump_buf;         /* async LRU bump buffer */
} LIBEVENT_THREAD;



 thread_libevent_process用于接收到master线程分发的新连接并进行处理,新的连接到来以后通过conn_new来处理新到来的连接。

static void thread_libevent_process(int fd, short which, void *arg) {
    LIBEVENT_THREAD *me = arg;
    CQ_ITEM *item;
    char buf[1];
    conn *c;
    unsigned int timeout_fd;

    if (read(fd, buf, 1) != 1) {
        if (settings.verbose > 0)
            fprintf(stderr, "Can't read from libevent pipe\n");
        return;
    }

    switch (buf[0]) {
    case 'c':
        item = cq_pop(me->new_conn_queue);

        if (NULL == item) {
            break;
        }
        switch (item->mode) {
            case queue_new_conn:
                c = conn_new(item->sfd, item->init_state, item->event_flags,
                                   item->read_buffer_size, item->transport,
                                   me->base);
                if (c == NULL) {
                } else {
                    c->thread = me;
                }
                break;

            case queue_redispatch:
                conn_worker_readd(item->c);
                break;
        }
}


主从线程通信流程分析

 尝试讲清楚master线程和worker线程之间如何实现新来socket的分发操作。
 在master线程接受连接以后会触发drive_machine方法,其中master的状态为conn_listening,所以我们暂时只关注这部分逻辑,最终我们通过dispatch_conn_new方法实现master到worker的分发操作。

static void drive_machine(conn *c) {
    bool stop = false;
    int sfd;
    socklen_t addrlen;
    struct sockaddr_storage addr;
    int nreqs = settings.reqs_per_event;
    int res;
    const char *str;
#ifdef HAVE_ACCEPT4
    static int  use_accept4 = 1;
#else
    static int  use_accept4 = 0;
#endif

    assert(c != NULL);

    while (!stop) {

        switch(c->state) {
        case conn_listening:
            addrlen = sizeof(addr);
            sfd = accept(c->sfd, (struct sockaddr *)&addr, &addrlen);
           // 中间省略一系列的socket相关的初始化工作            
            if (settings.maxconns_fast &&
            } else {
                dispatch_conn_new(sfd, conn_new_cmd, EV_READ | EV_PERSIST,
                                     DATA_BUFFER_SIZE, c->transport);
            }

            stop = true;
            break;



 dispatch_conn_new内部实现的功能比较简单,用于实现master向worker分发新连接:

  • 组装通信的CQ_ITEM对象,CQ_ITEM *item = cqi_new();
  • 通过轮询方式选择worker对象,(last_thread + 1) % settings.num_threads;
  • 通过pipe管道想worker发送新连接的socket,write(thread->notify_send_fd, buf, 1),其中buf[0] = 'c'。
void dispatch_conn_new(int sfd, enum conn_states init_state, int event_flags,
                       int read_buffer_size, enum network_transport transport) {
    CQ_ITEM *item = cqi_new();
    char buf[1];
    if (item == NULL) {
        close(sfd);
        /* given that malloc failed this may also fail, but let's try */
        fprintf(stderr, "Failed to allocate memory for connection object\n");
        return ;
    }

    int tid = (last_thread + 1) % settings.num_threads;

    LIBEVENT_THREAD *thread = threads + tid;

    last_thread = tid;

    item->sfd = sfd;
    item->init_state = init_state;
    item->event_flags = event_flags;
    item->read_buffer_size = read_buffer_size;
    item->transport = transport;
    item->mode = queue_new_conn;

    cq_push(thread->new_conn_queue, item);

    MEMCACHED_CONN_DISPATCH(sfd, thread->thread_id);
    buf[0] = 'c';
    if (write(thread->notify_send_fd, buf, 1) != 1) {
        perror("Writing to thread notify pipe");
    }
}



 thread_libevent_process是worker线程接受master分发新来连接时候的回调函数,内部通过conn_new来处理新连接的到来,conn_new的内部操作就是把心连接的socket注册到worker线程的libevent当中。

static void thread_libevent_process(int fd, short which, void *arg) {
    LIBEVENT_THREAD *me = arg;
    CQ_ITEM *item;
    char buf[1];
    conn *c;
    unsigned int timeout_fd;

    if (read(fd, buf, 1) != 1) {
        if (settings.verbose > 0)
            fprintf(stderr, "Can't read from libevent pipe\n");
        return;
    }

    switch (buf[0]) {
    case 'c':
        item = cq_pop(me->new_conn_queue);

        if (NULL == item) {
            break;
        }
        switch (item->mode) {
            case queue_new_conn:
                c = conn_new(item->sfd, item->init_state, item->event_flags,
                                   item->read_buffer_size, item->transport,
                                   me->base);
                if (c == NULL) {
                } else {
                    c->thread = me;
                }
                break;

            case queue_redispatch:
                conn_worker_readd(item->c);
                break;
        }
}



conn *conn_new(const int sfd, enum conn_states init_state,
                const int event_flags,
                const int read_buffer_size, enum network_transport transport,
                struct event_base *base) {
    conn *c;
    c = conns[sfd];

    // libevent相关的设置
    event_set(&c->event, sfd, event_flags, event_handler, (void *)c);
    event_base_set(base, &c->event);
    c->ev_flags = event_flags;

    if (event_add(&c->event, 0) == -1) {
        perror("event_add");
        return NULL;
    }

    STATS_LOCK();
    stats_state.curr_conns++;
    stats.total_conns++;
    STATS_UNLOCK();

    MEMCACHED_CONN_ALLOCATE(c->sfd);

    return c;
}


参考文章

libevent简单介绍
Memcached源码分析 - Memcached源码分析之基于Libevent的网络模型(1)

目录
相关文章
|
18天前
|
消息中间件 存储 Serverless
函数计算产品使用问题之怎么访问网络附加存储(NAS)存储模型文件
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
18天前
|
Kubernetes 负载均衡 网络安全
Kubernetes 网络模型与实践
【8月更文第29天】Kubernetes(K8s)是当今容器编排领域的佼佼者,它提供了一种高效的方式来管理容器化应用的部署、扩展和运行。Kubernetes 的网络模型是其成功的关键因素之一,它支持服务发现、负载均衡和集群内外通信等功能。本文将深入探讨 Kubernetes 的网络模型,并通过实际代码示例来展示服务发现和服务网格的基本概念及其实现。
36 1
|
14天前
|
网络协议 数据安全/隐私保护 网络架构
计算机网络模型
【9月更文挑战第2天】
41 24
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习模型之深度神经网络的特点
深度神经网络(Deep Neural Networks, DNNs)是一类机器学习模型,通过多个层级(层)的神经元来模拟人脑的工作方式,从而实现复杂的数据处理和模式识别任务。
14 1
|
12天前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
15天前
|
分布式计算 负载均衡 监控
p2p网络架构模型
P2P(Peer-to-Peer)模式是一种网络架构模型,在这种模型中,每个节点(peer)既是服务的提供者也是服务的消费者。这意味着每个参与的节点都可以直接与其他节点通信,并且可以相互提供资源和服务,例如文件共享、流媒体传输等。
19 6
|
12天前
|
网络协议 安全 网络安全
C语言 网络编程(四)常见网络模型
这段内容介绍了目前被广泛接受的三种网络模型:OSI七层模型、TCP五层模型以及TCP/IP四层模型,并简述了多个网络协议的功能与特性,包括HTTP、HTTPS、FTP、DNS、SMTP、TCP、UDP、IP、ICMP、ARP、RARP及SSH协议等,同时提到了ssh的免费开源实现openssh及其在Linux系统中的应用。
|
23天前
|
监控 安全 网络安全
零信任安全模型及其在网络中的实现
【8月更文挑战第24天】
56 1
|
16天前
|
网络协议 安全 网络性能优化
OSI 模型详解:网络通信的七层架构
【8月更文挑战第31天】
92 0
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的正则化技术:提升模型泛化能力的关键策略探索AI的奥秘:深度学习与神经网络
【8月更文挑战第27天】在深度学习的探索旅程中,我们常常遭遇模型过拟合的困境,就像是一位探险者在茫茫林海中迷失方向。本文将作为你的指南针,指引你理解并应用正则化技术,这一强大的工具能够帮助我们的模型更好地泛化于未见数据,就如同在未知领域中找到正确的路径。我们将从简单的L1和L2正则化出发,逐步深入到更为复杂的丢弃(Dropout)和数据增强等策略,为你的深度学习之旅提供坚实的支持。