入门 | 如何从零基础转行数据分析

简介:

转行,这个话题我觉得许多朋友都非常感兴趣。毕竟工作伴随着我们的一生,也是我们的主要收入来源,任谁都希望能拥有一份高薪又有前景的工作!

时下的大数据时代与人工智能热潮,相信也有许多对数据分析非常感兴趣且要转行的小伙伴。但对于希望转行数据分析的零基础小白们,他们并不知道进入数据分析行业需要学什么,也不太清楚数据分析师平时工作都在干什么。因此本文给出一些建议,希望能对零基础转行数据分析的小伙伴们有所启发。

一、知识储备

数据分析作为一门交叉学科,需要掌握多方面的知识。

763905a2b163569ddb2ff47ae4a5fe3c57cc6f8c

1) 数学与统计基础:

数据分析是指运用统计方法和分析工具对大量数据进行分析,挖掘出其潜在规律及价值,为经营决策提供科学严谨的理性依据。其中当然离不开数学与统计学的知识,需要有微积分、线性代数、概率论与数理统计等相关的知识储备才行。

2) 分析工具:

掌握基础的数据分析工具Excel与统计分析工具SPSS的用法。

3) SQL数据库语言:

数据的存储便离不开使用数据库,需掌握SQL数据库语言在关系型数据库系统中进行增删改查等操作才行。

4) 编程语言:

数据分析的进阶需要会使用一门或多门编程语言,如Python和R,这将会使你的数据分析变得更加高效。

5) 机器学习算法入门:

如果需要的话可以学习常用的分类、回归、聚类和降维等的常用算法以及它们的优缺点和使用场景,这将是你转行进入公司的加分项哦。

二、 行业分析

在学习数据分析的知识方面也不能落下对各个数据岗位的了解,接下来介绍数据分析行业中岗位,大致分为四个方向:数据分析、数据挖掘、数据开发、数据产品

1cd822ba77fc9d912e2f9a4789bdcb17bd1fff89

1) 数据分析师

从事数据采集、整理、分析,发现问题,分析问题,得出结论,为公司的决策层提供数据支持。偏向于业务。

2) 数据挖掘工程师/算法工程师

利用模型训练数据,从海量数据中挖掘规律,预测或分类对象,主要偏向编程和算法,对统计理论知识要求偏高。

3) 数据开发工程师

设计、搭建并维护基础设施,以提供数据收集、存储、处理、计算等平台。偏代码开发,需要在代码能力上弥补,但与纯技术栈的程序员相比需要一定的业务逻辑。

4) 数据产品经理

主要负责以数据为导向提炼需求、设计、规划、项目排期至项目落地,以及后期的产品改进和优化等。

三、 心态历练

一定要用细心、耐心、和平静的心态去做数据分析。数据分析是个细活,根据二八原则,其中数据的处理将占去数据分析中的八成时间,如果数据处理不当将影响接下来的分析,需要良好的心态减少犯错误的概率。

b50de113fb68b58ed8d21be69db252e0d549d446

其实是具有独立思考与换位思考的能力。数据分析并不仅仅是为了完成一些业务上面的数据需求和论证。数据分析者应该在理解业务的基础上,要有自己独特的见解,扩大自己的思考范围,提升洞察力。同时要换位思考,从多角度看待数据和使用数据。不同的人,不同的角度看问题都能得到不同的效果。


原文发布时间为:2018-11-7

本文作者:刘家铭

本文来自云栖社区合作伙伴“CDA数据分析师”,了解相关信息可以关注“CDA数据分析师”。

相关文章
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【8月更文挑战第29天】在数据驱动的时代,掌握数据分析技能变得尤为重要。本文将引导您了解如何使用Python这一强大工具来进行数据分析,从设置开发环境到实际操作案例,逐步深入,帮助您建立起数据分析的基本框架和思维模式。通过阅读本文,您将学会如何利用Python处理、分析和可视化数据,为进一步深入学习奠定坚实的基础。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析入门涉及基础如Python语言、数据分析概念及优势。
【7月更文挑战第5天】Python数据分析入门涉及基础如Python语言、数据分析概念及优势。关键工具包括NumPy(数组操作)、Pandas(数据处理)、Matplotlib(绘图)、Seaborn(高级可视化)和Scikit-learn(机器学习)。流程涵盖数据获取、清洗、探索、建模、评估和展示。学习和实践这些将助你有效利用数据。
54 2
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
使用Jupyter Notebook进行数据分析:入门与实践
【6月更文挑战第5天】Jupyter Notebook是数据科学家青睐的交互式计算环境,用于创建包含代码、方程、可视化和文本的文档。本文介绍了其基本用法和安装配置,通过一个数据分析案例展示了如何使用Notebook进行数据加载、清洗、预处理、探索、可视化以及建模。Notebook支持多种语言,提供直观的交互体验,便于结果呈现和分享。它是高效数据分析的得力工具,初学者可通过本文案例开始探索。
|
1月前
|
数据可视化 数据挖掘 大数据
Python 数据分析入门:从零开始处理数据集
Python 数据分析入门:从零开始处理数据集
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析:从入门到实践
使用Python进行数据分析:从入门到实践
50 2
|
24天前
|
数据采集 机器学习/深度学习 数据可视化
深入浅出:用Python进行数据分析的入门指南
【10月更文挑战第21天】 在信息爆炸的时代,掌握数据分析技能就像拥有一把钥匙,能够解锁隐藏在庞大数据集背后的秘密。本文将引导你通过Python语言,学习如何从零开始进行数据分析。我们将一起探索数据的收集、处理、分析和可视化等步骤,并最终学会如何利用数据讲故事。无论你是编程新手还是希望提升数据分析能力的专业人士,这篇文章都将为你提供一条清晰的学习路径。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【9月更文挑战第33天】本文旨在为初学者提供一个关于使用Python进行数据分析的全面概述。我们将从基本的安装和设置开始,逐步介绍数据处理、数据可视化以及机器学习的基本概念和应用。文章将通过实际代码示例来展示如何使用Python及其相关库来解决常见的数据分析问题。
|
1月前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--入门
Python数据分析篇--NumPy--入门
33 0
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python中的简单数据分析:入门指南
【10月更文挑战第2天】Python中的简单数据分析:入门指南
33 0
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的入门指南
【9月更文挑战第11天】本文旨在为初学者提供一条清晰的道路,通过Python探索数据科学的奇妙世界。我们将从基础语法讲起,逐步深入到数据处理、可视化以及机器学习等高级话题。文章不仅分享理论知识,还将通过实际代码示例,展示如何应用这些知识解决实际问题。无论你是编程新手,还是希望扩展技能的数据分析师,这篇文章都将是你宝贵的资源。