E-MapReduce(Hadoop)10大类问题之集群规划

本文涉及的产品
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
云数据库 Redis 版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介:

集群规划类问题

所有的使用Hadoop或者打算使用Hadoop的人肯定会遇到集群规划的问题,我到底使用多大的集群规模呢?有没有一个标准呢? 本篇文章就为你介绍集群规划。

在云环境E-MapReduce中,各种搭配是比较自由的。当前,cpu跟memory的比例有1:2及1:4的。磁盘是单机4快盘,从不同的性能有普通云盘、高校云盘、SSD云盘,价格也分别不同,单盘的容量也从40g到32T。

对于 有钱的公司,本文就不用看了,直接用最贵最多的肯定是满足需求的。对于广大的创业公司或者本着开源节流的思想来用的公司,还是需要研究下的。

基本原则

  • 离线在线分开,主要是把在线的流式计算(SparkStreamingStorm)、存储服务(Hbase)与离线计算分开。因为两者追求的目标不一样,在线追求qps响应时间,离线追求吞吐。
  • Hbase需要使用SSD云盘,直接使用EMR提供的HDFS,因为Hbase需要低延迟。
  • 冷数据尽量放在OSS中。
  • 尽量合并小文件,把数据放在OSS中。
  • 对于离线计算,存储计算尽量分离。如果放在OSS中对于的性能较低(小文件特别多),则需要本地磁盘。
  • 在波峰期间,启动EMR按需集群,分析数据,待波峰通过释放集群,以节约成本。
  • 对于spark,尽量配置cpu:memory为1cpu:4g的比例。

用户评估集群的规模的一般步骤:
评估数据量 -> 测试一个小规模的集群的量化性能 -> 最终选择集群的规格。

典型的离线场景

用户每天增加100G的数据,1个月3T,压缩后为 1T(假设压缩率为30%) 数据全部存储在HDFS中,1年之前数据分析比较少,但是希望数据存下来。计算主要以离线机器学习及ETL为主,主要使用hive及spark,并发作业5-10个左右。那客户1年大约有12T的数据。存在HDFS中大约需要36T的磁盘。一般来讲,ETL与机器学习是比较耗费CPU的。目前E-MapReduce作业是从master提交,master可以大一点。

  • 用户的存储需求为12T物理数据,放HDFS需要36T的磁盘
  • 计算的需求,这个不好评估,需要看实际的运行情况,一般来讲,是用户根据运行时间、跟规模一起来评估的。可以先跑一个基本的case,评估一个小集群的运行时间。再按照一定的线性比例上调机器规模。
    假设用户运行大约需要 20slave 8cpu 32g,则

    • 2 master 8cpu32g的机器,磁盘搭配 350G 高校云盘(350G可以保证最大的磁盘IO)
    • 20 slave 8cpu32g 450g*4块的高效云盘
    • 一年之前的数据全部放在OSS中,需要时E-MapReduce直接连接OSS分析

一般来讲,业务的变化,集群就可能不合适了,这个时候需要重新调整集群的规格,最常见的方式就是 增加节点、重新创建一个新的规格的集群(所以最好是包月,当快到期时,需要再创建一个集群)

流式计算

此块比较好规划,基本磁盘可以忽略不计,主要是以 cpu为主。
按照先测试,再按照比例增大。
流式计算纯粹统计uv等cpu与memory按照1:2的比例,需要在内存暂存数据的按照1:4
以saprkstreaming暂存数据为例:

  • 1台master 4cpu8g 350*1 高效云盘
  • 2台slave 4cpu16g 100*4 高效云盘
  • 后续可以按照实际情况扩展节点。

存储服务Hbase

此块磁盘最好使用SSD云盘,考虑到iops
流式计算cpu与memory按照1:4的比例,slave规格可以大一些
开始可以按照:

  • 2台master 4cpu8g 250*1 SSD云盘
  • 2台slave 16cpu64g 250g*4 SSD云盘
  • 后续可以按照实际情况扩展节点。

离线计算 存储与计算分离

离线计算其实可以做到存储与计算分离的,比如把数据全部放在OSS中,再通过无状态的E-MapReduce分析。那E-MapReduce就纯粹的计算,不存在存储跟计算搭配来适应业务了,这样最为灵活。后续会专门有一篇文章讲述存储计算分离的。

后记

集群的规格最终还是需要用户按照自身的业务特点来最终评估,以上只是一些大体的原则。欢迎各位E-MapReduce及Hadoop用户给出自己的建议。


HBase技术交流社区 - 阿里官方“HBase生态+Spark社区大群”点击加入:https://dwz.cn/Fvqv066s

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
9天前
|
分布式计算 Hadoop Devops
Hadoop集群配置https实战案例
本文提供了一个实战案例,详细介绍了如何在Hadoop集群中配置HTTPS,包括生成私钥和证书文件、配置keystore和truststore、修改hdfs-site.xml和ssl-client.xml文件,以及重启Hadoop集群的步骤,并提供了一些常见问题的故障排除方法。
18 3
Hadoop集群配置https实战案例
|
10天前
|
机器学习/深度学习 分布式计算 安全
Hadoop集群常见报错汇总
这篇博客总结了Hadoop集群中可能遇到的各种常见错误,包括Kerberos认证问题、配置错误、权限问题等,并为每个问题提供了详细的错误复现、原因分析以及相应的解决方案。
25 1
Hadoop集群常见报错汇总
|
10天前
|
资源调度 分布式计算 运维
Hadoop集群资源管理篇-资源调度器
详细介绍了Hadoop集群资源管理中的资源调度器,包括资源分配的概念、大数据运维工程师如何管理集群工作负载、资源调度器的背景、Hadoop提供的FIFO、容量调度器和公平调度器三种资源调度器的概述以及它们之间的对比。
42 4
|
10天前
|
分布式计算 监控 Hadoop
监控Hadoop集群实战篇
介绍了监控Hadoop集群的方法,包括监控Linux服务器、Hadoop指标、使用Ganglia监控Hadoop集群、Hadoop日志记录、通过Hadoop的Web UI进行监控以及其他Hadoop组件的监控,并提供了相关监控工具和资源的推荐阅读链接。
24 2
|
15天前
|
机器学习/深度学习 存储 分布式计算
Hadoop高可用集群搭建
Hadoop高可用集群搭建
|
12天前
|
存储 分布式计算 负载均衡
|
15天前
|
存储 分布式计算 资源调度
Hadoop集群的扩展性与容错能力
【8月更文第28天】Hadoop 是一种用于处理和存储大规模数据集的开源软件框架。它由两个核心组件构成:Hadoop 分布式文件系统 (HDFS) 和 MapReduce 计算框架。Hadoop 的设计考虑了可扩展性和容错性,使其成为大规模数据处理的理想选择。
32 0
|
数据采集 分布式计算 搜索推荐
Hadoop学习---7、OutputFormat数据输出、MapReduce内核源码解析、Join应用、数据清洗、MapReduce开发总结(一)
Hadoop学习---7、OutputFormat数据输出、MapReduce内核源码解析、Join应用、数据清洗、MapReduce开发总结(一)
|
存储 分布式计算 Hadoop
Hadoop基础学习---6、MapReduce框架原理(一)
Hadoop基础学习---6、MapReduce框架原理(一)
|
存储 分布式计算 Hadoop
【Hadoop】一个例子带你了解MapReduce
【Hadoop】一个例子带你了解MapReduce
84 1