PostgreSQL 10.1 手册_部分 II. SQL 语言_第 15章 并行查询_15.1. 并行查询如何工作

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 15.1. 并行查询如何工作 当优化器判断对于某一个特定的查询,并行查询是最快的执行策略时,优化器将创建一个查询计划。该计划包括一个Gather或Gather Merge节点。下面是一个简单的例子: EXPLAIN SELECT * FROM pgbench_accounts WHERE fi.

15.1. 并行查询如何工作

当优化器判断对于某一个特定的查询,并行查询是最快的执行策略时,优化器将创建一个查询计划。该计划包括一个GatherGather Merge节点。下面是一个简单的例子:

EXPLAIN SELECT * FROM pgbench_accounts WHERE filler LIKE '%x%';
                                     QUERY PLAN                                      
-------------------------------------------------------------------------------------
 Gather  (cost=1000.00..217018.43 rows=1 width=97)
   Workers Planned: 2
   ->  Parallel Seq Scan on pgbench_accounts  (cost=0.00..216018.33 rows=1 width=97)
         Filter: (filler ~~ '%x%'::text)
(4 rows)

在所有的情形下,GatherGather Merge 节点都只有一个子计划,它是将被并行执行的计划的一部分。如果 Gather 或Gather Merge节点位于计划树的最顶层,那么整个查询将并行执行。 如果它位于计划树的其他位置,那么只有在它下面的计划部分会并行执行。 在上面的例子中,查询只访问了一个表,因此除Gather 节点本身之外只有一个计划节点。因为该计划节点是 Gather 节点的孩子节点,所以它会并行执行。

使用 EXPLAIN命令, 你能看到规划器选择的工作者数量。 当查询执行期间到达Gather节点时, 实现用户会话的进程将会请求和规划器选中的工作者数量一样多的 后台工作者进程。 规划器考虑使用的后台工作者的数量限制为最多 max_parallel_workers_per_gather。 任何时候能够存在的后台工作者进程的总数由max_worker_processes 和max_parallel_workers限制, 因此一个并行查询可能会使用比规划中少的工作者来运行, 甚至有可能根本不使用工作者。最优的计划可能取决于可用的工作者的数量, 因此这可能会导致不好的查询性能。如果这种情况经常发生, 那么就应当考虑一下提高max_worker_processesmax_parallel_workers 的值,这样更多的工作者可以同时运行;或者降低max_parallel_workers_per_gather, 这样规划器会要求少一些的工作者。

为一个给定并行查询成功启动的后台工作者进程都将会执行计划的并行部分。 这些工作者的领导者也将执行该计划,不过它还有一个额外的任务: 它还必须读取所有由工作者产生的元组。当整个计划的并行部分只产生了少量元组时, 领导者通常将表现为一个额外的加速查询执行的工作者。反过来, 当计划的并行部分产生大量的元组时,领导者将几乎全用来读取由工作者产生的元组并且执行 Gather节点或Gather Merge 节点上层计划节点所要求的任何进一步处理。在这些情况下, 领导者所作的执行并行部分的工作将会很少。

当计划平行部分顶部的节点是Gather Merge而不是Gather时, 它表示执行计划的并行部分的每个进程正在按排序顺序生成元组, 领导者正在执行顺序保留合并。相反,Gather 以任何方便地顺序从工作者读取元组,从而破坏可能存在的任何排序顺序。

本文转自PostgreSQL中文社区,原文链接:15.1. 并行查询如何工作

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
消息中间件 存储 关系型数据库
PostgreSQL技术大讲堂 - 第33讲:并行查询管理
PostgreSQL从小白到专家,技术大讲堂 - 第33讲:并行查询管理
687 1
|
5月前
|
关系型数据库 PostgreSQL
【赵渝强老师】PostgreSQL的并行查询
PostgreSQL的并行查询功能通过多CPU提升查询速度,尤其适用于处理大量数据但返回少量结果的场景。它利用Leader进程、Gather节点和Worker线程协作完成查询任务,显著提高性能。本文详细解析其工作原理及适用场景,并通过实例展示开启与关闭并行查询的性能差异。
183 2
|
关系型数据库 Go 网络安全
go语言中PostgreSQL驱动安装
【11月更文挑战第2天】
530 5
|
运维 监控 关系型数据库
PostgreSQL运维核心技能之掌握并行查询
PostgreSQL运维核心技能之掌握并行查询
374 9
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
529 13
|
存储 分布式计算 大数据
MaxCompute产品使用合集之在sql里调用自定义的udf时,设置一次同时处理的数据行数,是并行执行还是串行执行的
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
关系型数据库 MySQL 数据库
史上最全的MySQL性能手册(优化+SQL+并发+数据库)
史上最全的MySQL性能手册(优化+SQL+并发+数据库)
|
SQL 存储 关系型数据库
Mysql表的有关细节sql语句手册
Mysql表的有关细节sql语句手册
|
SQL 数据挖掘 关系型数据库
数据分析面试手册《SQL篇》
数据分析面试常见SQL题解读。
|
SQL XML 存储
PostgreSQL 12 文档: 部分 II. SQL 语言
部分 II. SQL 语言 这部份描述在PostgreSQL中SQL语言的使用。我们从描述SQL的一般语法开始,然后解释如何创建保存数据的结构、如何填充数据库以及如何查询它。中间的部分列出了在SQL命令中可用的数据类型和函数。剩余的部分则留给对于调优数据性能的重要方面。 这部份的信息被组织成让一个新用户可以从头到尾跟随它来全面理解主题,而不需要多次参考后面的内容。这些章都是自包含的,这样高级用户可以根据他们的选择阅读单独的章。这一部分的信息被以一种叙事的风格展现。需要查看一个特定命令的完整描述的读者应该去看看第 VI 部分。
230 0

热门文章

最新文章

推荐镜像

更多