PostgreSQL 10.1 手册_部分 II. SQL 语言_第 15章 并行查询_15.1. 并行查询如何工作

本文涉及的产品
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
简介: 15.1. 并行查询如何工作 当优化器判断对于某一个特定的查询,并行查询是最快的执行策略时,优化器将创建一个查询计划。该计划包括一个Gather或Gather Merge节点。下面是一个简单的例子: EXPLAIN SELECT * FROM pgbench_accounts WHERE fi.

15.1. 并行查询如何工作

当优化器判断对于某一个特定的查询,并行查询是最快的执行策略时,优化器将创建一个查询计划。该计划包括一个GatherGather Merge节点。下面是一个简单的例子:

EXPLAIN SELECT * FROM pgbench_accounts WHERE filler LIKE '%x%';
                                     QUERY PLAN                                      
-------------------------------------------------------------------------------------
 Gather  (cost=1000.00..217018.43 rows=1 width=97)
   Workers Planned: 2
   ->  Parallel Seq Scan on pgbench_accounts  (cost=0.00..216018.33 rows=1 width=97)
         Filter: (filler ~~ '%x%'::text)
(4 rows)

在所有的情形下,GatherGather Merge 节点都只有一个子计划,它是将被并行执行的计划的一部分。如果 Gather 或Gather Merge节点位于计划树的最顶层,那么整个查询将并行执行。 如果它位于计划树的其他位置,那么只有在它下面的计划部分会并行执行。 在上面的例子中,查询只访问了一个表,因此除Gather 节点本身之外只有一个计划节点。因为该计划节点是 Gather 节点的孩子节点,所以它会并行执行。

使用 EXPLAIN命令, 你能看到规划器选择的工作者数量。 当查询执行期间到达Gather节点时, 实现用户会话的进程将会请求和规划器选中的工作者数量一样多的 后台工作者进程。 规划器考虑使用的后台工作者的数量限制为最多 max_parallel_workers_per_gather。 任何时候能够存在的后台工作者进程的总数由max_worker_processes 和max_parallel_workers限制, 因此一个并行查询可能会使用比规划中少的工作者来运行, 甚至有可能根本不使用工作者。最优的计划可能取决于可用的工作者的数量, 因此这可能会导致不好的查询性能。如果这种情况经常发生, 那么就应当考虑一下提高max_worker_processesmax_parallel_workers 的值,这样更多的工作者可以同时运行;或者降低max_parallel_workers_per_gather, 这样规划器会要求少一些的工作者。

为一个给定并行查询成功启动的后台工作者进程都将会执行计划的并行部分。 这些工作者的领导者也将执行该计划,不过它还有一个额外的任务: 它还必须读取所有由工作者产生的元组。当整个计划的并行部分只产生了少量元组时, 领导者通常将表现为一个额外的加速查询执行的工作者。反过来, 当计划的并行部分产生大量的元组时,领导者将几乎全用来读取由工作者产生的元组并且执行 Gather节点或Gather Merge 节点上层计划节点所要求的任何进一步处理。在这些情况下, 领导者所作的执行并行部分的工作将会很少。

当计划平行部分顶部的节点是Gather Merge而不是Gather时, 它表示执行计划的并行部分的每个进程正在按排序顺序生成元组, 领导者正在执行顺序保留合并。相反,Gather 以任何方便地顺序从工作者读取元组,从而破坏可能存在的任何排序顺序。

本文转自PostgreSQL中文社区,原文链接:15.1. 并行查询如何工作

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
1月前
|
SQL 数据管理 关系型数据库
SQL 语言入门:开启数据管理的大门
在数字化时代,数据已成为核心资产,而 SQL 作为操作关系型数据库的标准语言,是数据从业者、程序员及办公人员必备技能。本文从基础概念讲起,详解 SQL 的核心用法,包括数据查询、插入、修改、删除及表结构操作,并通过实例演示帮助读者快速上手。掌握 SQL,不仅能提升数据处理效率,更为深入理解数据管理打下坚实基础。
|
1月前
|
SQL 监控 关系型数据库
一键开启百倍加速!RDS DuckDB 黑科技让SQL查询速度最高提升200倍
RDS MySQL DuckDB分析实例结合事务处理与实时分析能力,显著提升SQL查询性能,最高可达200倍,兼容MySQL语法,无需额外学习成本。
|
1月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
|
1月前
|
关系型数据库 分布式数据库 数据库
阿里云数据库收费价格:MySQL、PostgreSQL、SQL Server和MariaDB引擎费用整理
阿里云数据库提供多种类型,包括关系型与NoSQL,主流如PolarDB、RDS MySQL/PostgreSQL、Redis等。价格低至21元/月起,支持按需付费与优惠套餐,适用于各类应用场景。
|
1月前
|
SQL 监控 关系型数据库
SQL优化技巧:让MySQL查询快人一步
本文深入解析了MySQL查询优化的核心技巧,涵盖索引设计、查询重写、分页优化、批量操作、数据类型优化及性能监控等方面,帮助开发者显著提升数据库性能,解决慢查询问题,适用于高并发与大数据场景。
|
19天前
|
SQL Oracle 关系型数据库
SQL语言小结
针对数据库、表单和数据行的增删改,没有涉及到sql真正的用途也就是查询,sql提供的查询语句的关键字占 sql 语言的一半之多,查询语句还是得单拿出来讲,不然太多了。 因为没有涉及到查询,所以sql的新增和修改都是很笼统的做法,drop、alter drop、delete这些很容易,逻辑性也不强,再次说明sql的真正精髓在于查询,不然为啥叫做结构化查询语言
168 0
|
19天前
|
SQL 关系型数据库 MySQL
(SQL)SQL语言中的查询语句整理
查询语句在sql中占了挺大一部分篇幅,因为在数据库中使用查询语句的次数远多于更新与删除命令。而查询语句比起其他语句要更加的复杂,可因为sql是数据库不可或缺的一部分,所以即使不懂,也必须得弄懂,以上。
116 0
|
1月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
|
4月前
|
存储 关系型数据库 测试技术
拯救海量数据:PostgreSQL分区表性能优化实战手册(附压测对比)
本文深入解析PostgreSQL分区表的核心原理与优化策略,涵盖性能痛点、实战案例及压测对比。首先阐述分区表作为继承表+路由规则的逻辑封装,分析分区裁剪失效、全局索引膨胀和VACUUM堆积三大性能杀手,并通过电商订单表崩溃事件说明旧分区维护的重要性。接着提出四维设计法优化分区策略,包括时间范围分区黄金法则与自动化维护体系。同时对比局部索引与全局索引性能,展示后者在特定场景下的优势。进一步探讨并行查询优化、冷热数据分层存储及故障复盘,解决分区锁竞争问题。
533 2
|
关系型数据库 分布式数据库 PolarDB
《阿里云产品手册2022-2023 版》——PolarDB for PostgreSQL
《阿里云产品手册2022-2023 版》——PolarDB for PostgreSQL
532 0