PostgreSQL 10.1 手册_部分 II. SQL 语言_第 12 章 全文搜索_12.8. 测试和调试文本搜索

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 12.8. 测试和调试文本搜索 12.8.1. 配置测试 12.8.2. 解析器测试 12.8.3. 词典测试 一个自定义文本搜索配置的行为很容易变得混乱。本节中描述的函数对于测试文本搜索对象有用。

12.8. 测试和调试文本搜索

一个自定义文本搜索配置的行为很容易变得混乱。本节中描述的函数对于测试文本搜索对象有用。你可以测试一个完整的配置,或者独立测试解析器和词典。

12.8.1. 配置测试

函数ts_debug允许简单地测试一个文本搜索配置。

ts_debug([ config regconfig, ] document text,
         OUT alias text,
         OUT description text,
         OUT token text,
         OUT dictionaries regdictionary[],
         OUT dictionary regdictionary,
         OUT lexemes text[])
         returns setof record

ts_debug显示document的每一个记号的信息,记号由解析器产生并由配置的词典处理过。该函数使用由config指定的配置,如果该参数被忽略则使用default_text_search_config指定的配置。

ts_debug为解析器在文本中标识的每一个记号返回一行。被返回的列是:

  • alias text — 记号类型的短名称

  • description text — 记号类型的描述

  • token text — 记号的文本

  • dictionaries regdictionary[] — 配置为这种记号类型选择的词典

  • dictionary regdictionary — 识别该记号的词典,如果没有词典能识别则为NULL

  • lexemes text[] — 识别该记号的词典产生的词位,如果没有词典能识别则为NULL;一个空数组({})表示该记号被识别为一个停用词

这里是一个简单的例子:

SELECT * FROM ts_debug('english','a fat  cat sat on a mat - it ate a fat rats');
   alias   |   description   | token |  dictionaries  |  dictionary  | lexemes 
-----------+-----------------+-------+----------------+--------------+---------
 asciiword | Word, all ASCII | a     | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | fat   | {english_stem} | english_stem | {fat}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | cat   | {english_stem} | english_stem | {cat}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | sat   | {english_stem} | english_stem | {sat}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | on    | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | a     | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | mat   | {english_stem} | english_stem | {mat}
 blank     | Space symbols   |       | {}             |              | 
 blank     | Space symbols   | -     | {}             |              | 
 asciiword | Word, all ASCII | it    | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | ate   | {english_stem} | english_stem | {ate}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | a     | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | fat   | {english_stem} | english_stem | {fat}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | rats  | {english_stem} | english_stem | {rat}

为了一个更广泛的示范,我们先为英语语言创建一个public.english配置和 Ispell 词典:

CREATE TEXT SEARCH CONFIGURATION public.english ( COPY = pg_catalog.english );

CREATE TEXT SEARCH DICTIONARY english_ispell (
    TEMPLATE = ispell,
    DictFile = english,
    AffFile = english,
    StopWords = english
);

ALTER TEXT SEARCH CONFIGURATION public.english
   ALTER MAPPING FOR asciiword WITH english_ispell, english_stem;
SELECT * FROM ts_debug('public.english','The Brightest supernovaes');
   alias   |   description   |    token    |         dictionaries          |   dictionary   |   lexemes   
-----------+-----------------+-------------+-------------------------------+----------------+-------------
 asciiword | Word, all ASCII | The         | {english_ispell,english_stem} | english_ispell | {}
 blank     | Space symbols   |             | {}                            |                | 
 asciiword | Word, all ASCII | Brightest   | {english_ispell,english_stem} | english_ispell | {bright}
 blank     | Space symbols   |             | {}                            |                | 
 asciiword | Word, all ASCII | supernovaes | {english_ispell,english_stem} | english_stem   | {supernova}

在这个例子中,词Brightest被解析器识别为一个ASCII 词(别名asciiword)。对于这种记号类型,词典列表是english_ispellenglish_stem。该词被english_ispell识别,这个词典将它缩减为名词bright。词supernovaes对于english_ispell词典是未知的,因此它被传递给下一个词典,并且幸运地是,它被识别了(实际上,english_stem是一个 Snowball 词典,它识别所有的东西;这也是为什么它被放置在词典列表的尾部)。

Theenglish_ispell词典识别为一个停用词(第 12.6.1 节)并且将不会被索引。空格也被丢弃,因为该配置没有为它们提供词典。

你可以通过显式地指定你想看哪些列来缩减输出的宽度:

SELECT alias, token, dictionary, lexemes
FROM ts_debug('public.english','The Brightest supernovaes');
   alias   |    token    |   dictionary   |   lexemes   
-----------+-------------+----------------+-------------
 asciiword | The         | english_ispell | {}
 blank     |             |                | 
 asciiword | Brightest   | english_ispell | {bright}
 blank     |             |                | 
 asciiword | supernovaes | english_stem   | {supernova}

12.8.2. 解析器测试

下列函数允许直接测试一个文本搜索解析器。

ts_parse(parser_name text, document text,
         OUT tokid integer, OUT token text) returns setof record
ts_parse(parser_oid oid, document text,
         OUT tokid integer, OUT token text) returns setof record

ts_parse解析给定的document并返回一系列记录,每一个记录对应一个由解析产生的记号。每一个记录包括一个tokid展示分配给记号的类型以及一个token展示记号的文本。例如:

SELECT * FROM ts_parse('default', '123 - a number');
 tokid | token
-------+--------
    22 | 123
    12 |
    12 | -
     1 | a
    12 |
     1 | number

ts_token_type(parser_name text, OUT tokid integer,
              OUT alias text, OUT description text) returns setof record
ts_token_type(parser_oid oid, OUT tokid integer,
              OUT alias text, OUT description text) returns setof record

ts_token_type返回一个表,该表描述指定解析器能够识别的每一种记号类型。对于每一种记号类型,该表给出了解析器用来标注该类型记号的整数tokid,还给出了在配置命令中命名该记号类型的alias,以及一个简短的description。例如:

SELECT * FROM ts_token_type('default');
 tokid |      alias      |               description                
-------+-----------------+------------------------------------------
     1 | asciiword       | Word, all ASCII
     2 | word            | Word, all letters
     3 | numword         | Word, letters and digits
     4 | email           | Email address
     5 | url             | URL
     6 | host            | Host
     7 | sfloat          | Scientific notation
     8 | version         | Version number
     9 | hword_numpart   | Hyphenated word part, letters and digits
    10 | hword_part      | Hyphenated word part, all letters
    11 | hword_asciipart | Hyphenated word part, all ASCII
    12 | blank           | Space symbols
    13 | tag             | XML tag
    14 | protocol        | Protocol head
    15 | numhword        | Hyphenated word, letters and digits
    16 | asciihword      | Hyphenated word, all ASCII
    17 | hword           | Hyphenated word, all letters
    18 | url_path        | URL path
    19 | file            | File or path name
    20 | float           | Decimal notation
    21 | int             | Signed integer
    22 | uint            | Unsigned integer
    23 | entity          | XML entity

12.8.3. 词典测试

ts_lexize函数帮助词典测试。

ts_lexize(dict regdictionary, token text) returns text[]

如果输入的token是该词典已知的,则ts_lexize返回一个词位数组;如果记号是词典已知的但是它是一个停用词,则返回一个空数组;或者如果它对词典是未知词,则返回NULL

例子:

SELECT ts_lexize('english_stem', 'stars');
 ts_lexize
-----------
 {star}

SELECT ts_lexize('english_stem', 'a');
 ts_lexize
-----------
 {}

注意

ts_lexize函数期望一个单一记号而不是文本。下面的情况会让它搞混:

SELECT ts_lexize('thesaurus_astro','supernovae stars') is null;
 ?column?
----------
 t

分类词典thesaurus_astro确实知道短语supernovae stars,但是ts_lexize会失败,因为它无法解析输入文本而把它当做一个单一记号。可以使用plainto_tsqueryto_tsvector来测试分类词典,例如:

SELECT plainto_tsquery('supernovae stars');
 plainto_tsquery
-----------------
 'sn'

本文转自PostgreSQL中文社区,原文链接:12.8. 测试和调试文本搜索

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
3月前
|
SQL 传感器 人工智能
生成更智能,调试更轻松,SLS SQL Copilot 焕新登场!
阿里云日志服务(SLS)推出智能分析助手 SLS SQL Copilot,融合 AI 技术与日志分析最佳实践,将自然语言转换为 SQL 查询,降低使用门槛,提升查询效率。其具备原生集成、智能语义理解与高效执行能力,助力用户快速洞察日志数据价值,实现智能化日志分析新体验。
215 1
|
3月前
|
SQL 传感器 人工智能
生成更智能,调试更轻松,SLS SQL Copilot 焕新登场!
本文是阿里云日志服务(SLS)首次对外系统性地揭秘 SLS SQL Copilot 背后的产品理念、架构设计与核心技术积淀。我们将带你深入了解,这一智能分析助手如何从用户真实需求出发,融合前沿 AI 能力与 SLS 十余年日志分析最佳实践,打造出面向未来的智能化日志分析体验。
316 30
|
5月前
|
SQL
SQL中搜索中文无效或Select中文变乱码
SQL中搜索中文无效或Select中文变乱码
|
SQL 人工智能 关系型数据库
SQL玩转多模态AI,轻松搞定图片+文本混合搜索
本文介绍了一种通过原生SQL实现多模态智能检索的破局思路,基于PolarDB创新融合AI智能引擎,解决传统AI检索系统数据迁移冗余和工具链割裂的问题。方案优势包括低门槛AI集成、灵活适配多场景、全链路数据安全及按需付费免运维。文章详细描述了部署资源、应用配置及方案验证步骤,并提供清理资源指南以避免额外费用。适合希望快速构建智能搜索应用的开发者参考实践。
|
自然语言处理 搜索推荐 关系型数据库
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
这篇文章是关于Elasticsearch全文搜索引擎的学习指南,涵盖了基本概念、命令风格、索引操作、分词器使用,以及数据的增加、修改、删除和查询等操作。
323 0
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
|
SQL 存储 监控
串口调试助手连接SQL数据库的技巧与方法
串口调试助手是电子工程师和软件开发人员常用的工具,它能够帮助用户进行串口通信的调试和数据分析
|
SQL 关系型数据库 MySQL
|
SQL 数据处理 数据库
SQL正则表达式应用:文本数据处理的强大工具——深入探讨数据验证、模式搜索、字符替换等核心功能及性能优化和兼容性问题
【8月更文挑战第31天】SQL正则表达式是数据库管理和应用开发中处理文本数据的强大工具,支持数据验证、模式搜索和字符替换等功能。本文通过问答形式介绍了其基本概念、使用方法及注意事项,帮助读者掌握这一重要技能,提升文本数据处理效率。尽管功能强大,但在不同数据库系统中可能存在兼容性问题,需谨慎使用以优化性能。
318 0
|
SQL 监控 安全
代码审计-PHP原生开发篇&SQL注入&数据库监控&正则搜索&文件定位&静态分析
代码审计-PHP原生开发篇&SQL注入&数据库监控&正则搜索&文件定位&静态分析
232 6
|
SQL 分布式计算 大数据
MaxCompute产品使用合集之如何在本地IDE(如IntelliJ IDEA)中配置MaxCompute (mc) 的任务和调试SQL
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。

热门文章

最新文章