python+pytest单元测试框架之执行用例

简介: 接着上篇《python之pytest单元测试框架介绍》文章,本篇文章就pytest测试规范执行测试用例一、执行多个测试用例1.在一个测试类中创建多个测试用例。

接着上篇《python之pytest单元测试框架介绍》文章,本篇文章就pytest测试规范执行测试用例

一、执行多个测试用例

1.在一个测试类中创建多个测试用例。写入如下代码,保存为test_class.py

#coding:utf-8

class TestClass():

    def test_one(self):

        x = "this"

        assert "h" in x

    def test_two(self):

        x = "hello"

        assert x == "hi"

2.运行测试用例并查看结果

img_91f0a9a1a6539b863f4498d3db96f014.png
运行结果

注:这里有个知识点,不知道大家有没有发现,和之前的指令相比较,这里多了-p。-q  为quiet。表示在安静的模式输出报告诉。加不加这个参有什么区别呢? 读者可以对比一下两次输出的日志。其实,就是少了一些pytest的版本信息。

二、在pycharm编辑器中通过python调用pytest

1.当前目录如下

img_4d6a4a1b4c91b29f7ae63be6cca5ef48.png
pytest目录

2.test_main.py代码如下

#coding:utf-8

import pytest

def test_maim():

    assert 5 != 5

if __name__ == '__main__':

    pytest.main()

3.运行测试用例

img_6e6211a0ebdb8a175ae94a364e266d3d.png
测试结果

从执行测试用例的结果可以看到,main() 默认执行了当前文件夹下pytest所在的目录下的所有测试文件。

三、从多个测试用例中执行指定的测试用例

1.修改test_main.py测试用例,把pytest.main() 修改成:pytest.main("-q  test_main.py" ) ,如下所示

img_7ba4d62ac91e129818e374419aa00f8b.png
修改测试用例1

2.运行结果

img_a89d74f016e4c645f53dd25a4af41231.png
运行结果1

四、执行指定测试目录下的测试用例

1.修改test_main.py测试用例,把pytest.main() 修改成:pytest.main("D:/work/pytest/") ,如下所示

img_39beac66ef220a0151de304dd6b7eaa4.png
修改测试用例2

2.运行结果

img_aacca2ecf6fbc5e09cb977ae14fbf622.png
运行结果2

以上,我们都是通过指令来运行测试用例的,接下来,将通过创建运行测试用例的脚本,通过脚本的方式,来进行对用例的执行。

目录
相关文章
|
5天前
|
IDE 测试技术 开发工具
10个必备Python调试技巧:从pdb到单元测试的开发效率提升指南
在Python开发中,调试是提升效率的关键技能。本文总结了10个实用的调试方法,涵盖内置调试器pdb、breakpoint()函数、断言机制、logging模块、列表推导式优化、IPython调试、警告机制、IDE调试工具、inspect模块和单元测试框架的应用。通过这些技巧,开发者可以更高效地定位和解决问题,提高代码质量。
59 8
10个必备Python调试技巧:从pdb到单元测试的开发效率提升指南
|
11天前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
38 7
|
8天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
38 2
|
1月前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
114 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
24天前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
1月前
|
缓存 API 数据库
Python哪个框架合适开发速卖通商品详情api?
在跨境电商平台速卖通的商品详情数据获取与整合中,Python 语言及其多种框架(如 Flask、Django、Tornado 和 FastAPI)提供了高效解决方案。Flask 简洁灵活,适合快速开发;Django 功能全面,适用于大型项目;Tornado 性能卓越,擅长处理高并发;FastAPI 结合类型提示和异步编程,开发体验优秀。选择合适的框架需综合考虑项目规模、性能要求和团队技术栈。
27 2
|
1月前
|
安全 API 数据库
Python哪个框架合适开发淘宝商品详情api?
在数字化商业时代,开发淘宝商品详情API成为企业拓展业务的重要手段。Python凭借其强大的框架支持,如Flask、Django、Tornado和FastAPI,为API开发提供了多样化的选择。本文探讨了这些框架的特点、优势及应用场景,帮助开发者根据项目需求选择最合适的工具,确保API的高效、稳定与可扩展性。
30 0
|
1月前
|
安全 API 网络架构
Python中哪个框架最适合做API?
本文介绍了Python生态系统中几个流行的API框架,包括Flask、FastAPI、Django Rest Framework(DRF)、Falcon和Tornado。每个框架都有其独特的优势和适用场景。Flask轻量灵活,适合小型项目;FastAPI高性能且自动生成文档,适合需要高吞吐量的API;DRF功能强大,适合复杂应用;Falcon高性能低延迟,适合快速API开发;Tornado异步非阻塞,适合高并发场景。文章通过示例代码和优缺点分析,帮助开发者根据项目需求选择合适的框架。
156 0
|
23天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
22天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。