一. Threading简介
首先看下面的没有用Threading的程序
- imp
ort threading,time -
- def fun():
- s = 0
- for i in range(30):
- s += i
- time.sleep(0.1)
- print(s)
-
- if __name__ == '__main__':
- t = time.time()
- fun()
- fun()
- print(time.time()-t)
-
- >>>
- 435
- 435
- 6.023701906204224
- [Finished in 6.6s]
如果使用线程会有什么样的效果呢
- imp
ort threading,time -
- def fun():
- s = 0
- for i in range(30):
- s += i
- time.sleep(0.1)
- print(s)
-
- if __name__ == '__main__':
- # 创建了一个线程列表,包含2个线程
- ths = [threading.Thread(target=fun) for i in range(2)]
- for th in ths:
- th.start()
- t = time.time()
- for th in ths:
- th.join()
- print(time.time()-t)
-
-
- >>>
- 435
- 435
- 3.116874933242798
- [Finished in 3.7s]
这说明两个线程几乎是同时进行的
二. Threading的应用进阶
join(timeout)用来实现线程等待。
被调用join()方法的线程会一直阻塞调用者的线程,
直到自己结束(正常结束,或引发未处理异常),
或超出timeout的时间。
- imp
ort threading,time -
- class MyThread(threading.Thread):
-
- def run(self):
- for i in range(30):
- print('threading:',i)
- time.sleep(0.1)
-
- if __name__ == '__main__':
- t = MyThread()
- t.start()
- t.join(1)
- for i in range(10):
- print('Main:',i)
- time.sleep(0.1)
-
- >>>
- threading: 0
- threading: 1
- threading: 2
- 主线程等待t这个线程0.1秒后也开始运行
- Main: 0
- threading: 3
- Main: 1
- threading: 4
- Main: 2
- threading: 5
- Main: 3
- threading: 6
- Main: 4
- threading: 7
- Main: 5
- threading: 8
- Main: 6
- threading: 9
- Main: 7
- Main: 8
- Main: 9
- [Finished in 2.0s]
注意每次运行的结果都不太一样
2)daemon属性
被设定为后台运行的线程,会在主程序退出时主动自杀。
设置为后台运行线程的方法是:设置线程的daemon属性为True
- imp
ort threading,time -
- def dmn():
- print('dmn start...')
- time.sleep(2)
- print('dmn end.')
-
- def ndmn():
- print('ndmn start...')
- time.sleep(1)
- print('ndmn end.')
-
- d = threading.Thread(target=dmn)
- d.daemon = True
- n = threading.Thread(target=ndmn)
- print('start...')
- d.start()
- n.start()
- print('end.')
-
- >>>
- start...
- dmn start...
- ndmn start...
- end.
- ndmn end.
- [Finished in 1.3s]
由上面打印的结果我们可以看到dmn线程设置为后台线程后,它的 print('dmn end.') 语句并不没有执行,这是因为后台线程在主线程结束后会自杀,所以主线程执行完后,dmn线程没能说出自己的“遗言”。
作为对比,我将daemon设为False,结果如下
- ...
-
- d = threading.Thread(target=dmn)
- d.daemon = False
- ...
-
- >>>
- start...
- dmn start...
- ndmn start...
- end.
- ndmn end.
- dmn end.
- [Finished in 2.5s]
线程同步
1 )指令锁 threading.Lock
acquire尝试获得锁定,进入阻塞状态。
acquire(blocking=True, timeout=-1))
release释放获得锁定(资源使用完后)
release()
- imp
ort threading,time,random -
- share = 4
- lock = threading.Lock() #初始化指令锁
-
- class MyThread(threading.Thread):
- def __init__(self,i):
- super().__init__()
- self.i = i
-
- def run(self):
- global share
- for d in range(2):
- lock.acquire()
- print(share)
- share += self.i
- time.sleep(random.random())
- print('+',self.i,'=',share)
- lock.release()
-
- if __name__ == '__main__':
- t = MyThread(2)
- tt = MyThread(6)
- t.start()
- tt.start()
-
- >>>
- 4
- + 2 = 6
- 6
- + 6 = 12
- 12
- + 2 = 14
- 14
- + 6 = 20
- [Finished in 2.9s]
为了更好的感受指令锁的作用,将acquire和release去掉后结果如下
- ...
- def run(self):
- global share
- for d in range(2):
- # lock.acquire()
- print(share)
- share += self.i
- time.sleep(random.random())
- print('+',self.i,'=',share)
- # lock.release()
- ...
-
- >>>
- 4
- 6
- + 6 = 12
- 12
- + 2 = 18
- 18
- + 6 = 20
- + 2 = 20
- [Finished in 2.2s]
比较后可以知道,加了指令锁后可以清楚地知道对共享资源share操作的具体情况
2 )条件变量threading.Condition
属性
实例化时,可指定锁。
acquire()
release()
wait(timeout=None)
释放锁,进入等待阻塞,
直到唤醒或超时。notify(n=1)
唤醒等待该条件变量的线程。默认1个。notify_all()
唤醒等待该条件变量的所有线程。
实现严格的依照次序操作的线程之间的通信。
典型的实例:生产者/消费者(只有生产后,才能消费)。
线程之间可以互相通知,以达到默契的配合。
条件变量可以使用默认的锁或用户创建的锁来工作。
话不多说看代码
- imp
ort threading,time -
- share = 0
-
- share_cond = threading.Condition()
-
- # 生产者
- class ProThread(threading.Thread):
- def __init__(self):
- super().__init__()
- self.name = 'Produce'
-
- def run(self):
- global share
- if share_cond.acquire():
- while True:
- if not share: # 若没东西了,即开始生产
- share += 1
- print(self.name,share)
- share_cond.notify() #唤醒消费者?这个是我自己的理解
- share_cond.wait()
- time.sleep(1)
-
- # 消费者
- class CustomThread(threading.Thread):
- def __init__(self):
- super().__init__()
- self.name = 'Custom'
-
- def run(self):
- global share
- if share_cond.acquire():
- while True:
- if share:
- share -= 1 # 若有东西就买买买
- print(self.name,share)
- share_cond.notify() #唤醒生产者,同上,仅是个人理解,如有错请告知,谢谢
- share_cond.wait()
- time.sleep(1)
-
- if __name__ == '__main__':
- t = ProThread()
- tt = CustomThread()
- t.start()
- tt.start()
-
- >>>
- Produce 1
- Custom 0
- Produce 1
- Custom 0
- Produce 1
- Custom 0
- ...
- ...
- ...
上面的结果会一直重复执行下去
3 ) 信号量threading.Semaphore
属性
实例化时,指定使用量。
其内置计数器,锁定时+1,
释放时-1,计数器为0则阻塞。acquire(blocking=True,timeout=None)
release()释放锁。
- imp
ort threading,time -
- sema = threading.Semaphore(2)
-
- class MyThread(threading.Thread):
- def __init__(self,name):
- super().__init__()
- self.name = name
-
- def run(self):
- if sema.acquire():
- print(self.name,'Had got resource.')
- time.sleep(1)
- sema.release()
- print(self.name,'Had released resource.')
-
- if __name__ == '__main__':
- ths = [MyThread(str(i)+'Sema') for i in range(5)]
- for th in ths:
- th.start()
-
- >>>
- 0Sema Had got resource.
- 1Sema Had got resource.
- 2Sema Had got resource.
- 1Sema Had released resource.
- 3Sema Had got resource.
- 0Sema Had released resource.
- 3Sema Had released resource.
- 4Sema Had got resource.
- 2Sema Had released resource.
- 4Sema Had released resource.
- [Finished in 3.6s]
4 ) 线程通信threading.Event
其管理一个内部标志.实现一个线程,唤醒其它线程。
set() 设置内部标志为True
clear() 设置内部标志为False
wait(timeout)
阻塞线程,到内部标志为True。
- imp
ort threading,time -
- event = threading.Event()
-
- class MyThreadWait(threading.Thread):
- def run(self):
- self.name = 'Wait Thread'
- print(self.name,"Wait...")
- event.wait()
- print(self.name,"Start...")
- event.clear()
-
- class MyThreadMain(threading.Thread):
- def run(self):
- time.sleep(3)
- print('Main thread set event flag!')
- event.set()
-
- if __name__ == '__main__':
- thw = MyThreadWait()
- thm = MyThreadMain()
- thw.start()
- thm.start()
-
- >>>
- Wait Thread Wait...
- Main thread set event flag!
- Wait Thread Start...
- [Finished in 3.6s]
好了,大概就是这些了,其他的以后再补充,另外感谢麦子学院提供的免费课程~~~真心不是打广告
为了避嫌,顺便感谢一下imooc,极客学院~很多都是从这些造福人类的网站学到的。
另附上麦子学院的视频教程,毕竟要学会感恩嘛
http://www.maiziedu.com/course/644-9663/
marsggbo笔记出品,必属精品