DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络

简介: 一、深层神经网络深层神经网络的符号与浅层的不同,记录如下:用L表示层数,该神经网络L=4n[l]表示第l层的神经元的数量,例如n[1]=n[2]=5,n[3]=3,n[4]=1a[l]表示第\(l...

一、深层神经网络

深层神经网络的符号与浅层的不同,记录如下:

img_679d5288adede0a19866e56414e9e746.png

  • L表示层数,该神经网络L=4
  • n[l]表示第l层的神经元的数量,例如n[1]=n[2]=5,n[3]=3,n[4]=1
  • a[l]表示第l层中的激活函数,a[l]=g[l](z[l])

二、前向和反向传播

1. 第l层的前向传播

输入为 a[l1]
输出为 a[l], cache(z[l])

矢量化表示:
Z[l]=W[l]·A[l1]+b[l]


A[l]=g[l](Z[l])

2. 第l层的反向传播

输入为 da[l]
输出为 da[l1],dW[l],db[l]

计算细节:
dz[l]=da[l]g[l](z[l])


dw[l]=dz[l]a[l1]

db[l]=dz[l]

da[l1]=w[l]T·dz[l]

dz[l]=w[l+1]Tdz[l+1]g[l](z[l])

矢量化表示:
dZ[l]=dA[l]g[l](z[l])


dw[l]=1mdz[l]·A[l1]T

db[l]=1mnp.sum(dz[l],axis=1,keepdim=True)

dA[l1]=w[l]T·dz[l]

3. 总结

前向传播示例

img_c7252797ddfc84c5d62dd26495625292.png

反向传播

img_c3def0befe7b0ed65c0d23eb84796e13.png
更清晰的表示:

img_fbd66aebb71987a1cd48418947df764a.png

三、深层网络中的前向传播

img_cb1fd92ce511a9b52f7e4a76d916df0b.png

四、核对矩阵的维数

这节的内容主要是告诉我们如何知道自己在设计神经网络模型的时候各个参数的维度是否正确的方法。其实我自己在写代码的时候都得这样做才能有信心继续往下敲键盘,2333。

img_679d5288adede0a19866e56414e9e746.png
还是以这个神经网络为例,各层神经网络节点数为n[0]=3,n[1]=n[2]=5,n[3]=3,n[4]=1

先确定W[1]的维度:
已知Z[1]=W[1]·X+b[1],很容易知道Z[1]R5×1,XR3×1,b[1]其实不用计算就知道其维度与Z是相同的,即b[1]R5×1。根据矩阵内积计算公式可以确定W[1]R5×3
其他层同理,不再赘述。

五、为什么使用深层表示

为什么要使用深层表示?

This is a good question.
下面就从直观上来理解深层神经网络。

img_56bfa7eb9753fd7673179e840bd14068.png
如上图所示是一个人脸识别的过程,具体的实现步骤如下:

  • 1.通过深层神经网络首先会选取一些边缘信息,例如脸形,眼框,总之是一些边框之类的信息(我自己的理解是之所以先找出边缘信息是为了将要观察的事物与周围环境分割开来),这也就是第一层的作用。

  • 2.找到边缘信息后,开始放大,将信息聚合在一起。例如找到眼睛轮廓信息后,通过往上一层汇聚从而得到眼睛的信息;同理通过汇聚脸的轮廓信息得到脸颊信息等等

  • 3.在第二步的基础上将各个局部信息(眼睛、眉毛……)汇聚成一张人脸,最终达到人脸识别的效果。

六、搭建深层神经网络块

img_0ab7f203496eb1a100478db5240c5068.png
上图表示单个神经元的前向和反向传播算法过程。

  • 前向
    输入a[l1],经过计算g[l](w[l]·a[l1]+b[l])得到a[l]

  • 反向
    计算da[l],然后反向作为输入,经过一系列微分运算得到dw[l],db[l](用来更新权重和偏差),以及上一层的da[l1]

推广到整个深层神经网络就如下图所示:

img_36562d5d40b5ac0ea080f8008dc86703.png

祭上神图:

img_4c267f329c42fac366ccbc5b7881bce0.png

七、参数 vs 超参数

  • 参数
    常见的参数即为W[1],b[1],W[2],b[2]

  • 超参数
    • learning_rate: α
    • iterations(迭代次数)
    • hidden layer (隐藏层数量L)
    • hidden units (隐藏层神经元数量n[l])
    • 激活函数的选择
    • minibatch size
    • 几种正则化的方法
    • momentum(动力、动量)后面会提到

八、这和大脑有什么关系

主要就是说神经网络和人的大脑运行机理貌似很相似,blabla。。。







MARSGGBO原创





2017-9-2



目录
打赏
0
0
0
0
11
分享
相关文章
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
189 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
194 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
85 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
写在2025 MWC前夕:AI与移动网络融合的“奇点时刻”
2025年MWC前夕,AI与移动网络融合迎来“奇点时刻”。上海东方医院通过“思维链提示”快速诊断罕见病,某金融机构借助AI识别新型欺诈模式,均展示了AI在推理和学习上的飞跃。5G-A时代,低时延、大带宽特性支持端云协同,推动多模态AI感知能力提升,数字孪生技术打通物理与数字世界,助力各行业智能化转型。AI赋能移动网络,实现智能动态节能和优化用户体验,预示着更聪明、绿色、高效的未来。
使用通义灵码AI高效学习muduo网络库开发指南
Muduo 是一个基于 C++11 的高性能网络库,支持多线程和事件驱动,适用于构建高效的服务器和应用程序。它提供 TCP/IP 协议支持、异步非阻塞 I/O、定时器、异步日志等功能,并具备跨平台特性。通过 Git 克隆 muduo 仓库并切换至 C++17 分支可开始使用。借助 AI 工具如 Deepseak-v3,用户可以更便捷地学习和理解 Muduo 的核心模块及编写测试用例,提升开发效率。
DeepSeek:掀翻互联网底层的“东方神秘力量” ——当AI大模型成为网络世界的“基建狂魔”
DeepSeek正重构网络底层逻辑,从“哑管道”到“认知神经”,赋予网络思考能力。它通过意图驱动和认知架构,优化带宽资源,提升效率。技术上,MOE+MLA架构与FP8精度训练大幅降低成本,性能超越传统模型。产业链方面,通信巨头转型为“AI驯兽师”,推出智能预测、定制化网络等服务。然而,AI基建也面临安全挑战,如僵尸网络攻击和隐私问题。展望6G,AGI将成新“网络原住民”,带来更智能的服务。这场变革不仅提升了连接效率,还创造了更多价值。
FireCrawl:开源 AI 网络爬虫工具,自动爬取网站及子页面内容,预处理为结构化数据
FireCrawl 是一款开源的 AI 网络爬虫工具,专为处理动态网页内容、自动爬取网站及子页面而设计,支持多种数据提取和输出格式。
473 19
FireCrawl:开源 AI 网络爬虫工具,自动爬取网站及子页面内容,预处理为结构化数据
AI时代的网络安全:传统技术的落寞与新机遇
在AI时代,网络安全正经历深刻变革。传统技术如多因素身份认证、防火墙和基于密码的系统逐渐失效,难以应对新型攻击。然而,AI带来了新机遇:智能化威胁检测、优化安全流程、生物特征加密及漏洞管理等。AI赋能的安全解决方案大幅提升防护能力,但也面临数据隐私和技能短缺等挑战。企业需制定清晰AI政策,强化人机协作,推动行业持续发展。
80 16
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
66 18
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
102 31

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等