DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络

简介: 一、深层神经网络深层神经网络的符号与浅层的不同,记录如下:用\(L\)表示层数,该神经网络\(L=4\)\(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\)\(a^{[l]}\)表示第\(l...

一、深层神经网络

深层神经网络的符号与浅层的不同,记录如下:

img_679d5288adede0a19866e56414e9e746.png

  • \(L\)表示层数,该神经网络\(L=4\)
  • \(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\)
  • \(a^{[l]}\)表示第\(l\)层中的激活函数,\(a^{[l]}=g^{[l]}(z^{[l]})\)

二、前向和反向传播

1. 第\(l\)层的前向传播

输入为 \(a^{[l-1]}\)
输出为 \(a^{[l]}\), cache(\(z^{[l]}\))

矢量化表示:
\[Z^{[l]}=W^{[l]}·A^{[l-1]}+b^{[l]}\]
\[A^{[l]}=g^{[l]}(Z^{[l]})\]

2. 第\(l\)层的反向传播

输入为 \(da^{[l]}\)
输出为 \(da^{[l-1]},dW^{[l]},db^{[l]}\)

计算细节:
\[dz^{[l]}=da^{[l]}*g^{[l]'}(z^{[l]})\]
\[dw^{[l]}=dz^{[l]}*a^{[l-1]}\]
\[db^{[l]}=dz^{[l]}\]
\[da^{[l-1]}=w^{[l]^T}·dz^{[l]}\]
\[dz^{[l]}=w^{[l+1]^T}dz^{[l+1]}*g^{[l]'}(z^{[l]})\]

矢量化表示:
\[dZ^{[l]}=dA^{[l]}*g^{[l]'}(z^{[l]})\]
\[dw^{[l]}=\frac{1}{m}dz^{[l]}·A^{[l-1]^T}\]
\[db^{[l]}=\frac{1}{m}np.sum(dz^{[l]},axis=1,keepdim=True)\]
\[dA^{[l-1]}=w^{[l]^T}·dz^{[l]}\]

3. 总结

前向传播示例

img_c7252797ddfc84c5d62dd26495625292.png

反向传播

img_c3def0befe7b0ed65c0d23eb84796e13.png
更清晰的表示:

img_fbd66aebb71987a1cd48418947df764a.png

三、深层网络中的前向传播

img_cb1fd92ce511a9b52f7e4a76d916df0b.png

四、核对矩阵的维数

这节的内容主要是告诉我们如何知道自己在设计神经网络模型的时候各个参数的维度是否正确的方法。其实我自己在写代码的时候都得这样做才能有信心继续往下敲键盘,2333。

img_679d5288adede0a19866e56414e9e746.png
还是以这个神经网络为例,各层神经网络节点数为\(n^{[0]}=3,n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\)

先确定\(W^{[1]}\)的维度:
已知\(Z^{[1]}=W^{[1]}·X+b^{[1]}\),很容易知道\(Z^{[1]}∈R^{5×1},X∈R^{3×1}\),\(b^{[1]}\)其实不用计算就知道其维度与\(Z\)是相同的,即\(b^{[1]}∈R^{5×1}\)。根据矩阵内积计算公式可以确定\(W^{[1]}∈R^{5×3}\)
其他层同理,不再赘述。

五、为什么使用深层表示

为什么要使用深层表示?

This is a good question.
下面就从直观上来理解深层神经网络。

img_56bfa7eb9753fd7673179e840bd14068.png
如上图所示是一个人脸识别的过程,具体的实现步骤如下:

  • 1.通过深层神经网络首先会选取一些边缘信息,例如脸形,眼框,总之是一些边框之类的信息(我自己的理解是之所以先找出边缘信息是为了将要观察的事物与周围环境分割开来),这也就是第一层的作用。

  • 2.找到边缘信息后,开始放大,将信息聚合在一起。例如找到眼睛轮廓信息后,通过往上一层汇聚从而得到眼睛的信息;同理通过汇聚脸的轮廓信息得到脸颊信息等等

  • 3.在第二步的基础上将各个局部信息(眼睛、眉毛……)汇聚成一张人脸,最终达到人脸识别的效果。

六、搭建深层神经网络块

img_0ab7f203496eb1a100478db5240c5068.png
上图表示单个神经元的前向和反向传播算法过程。

  • 前向
    输入\(a^{[l-1]}\),经过计算\(g^{[l]}(w^{[l]}·a^{[l-1]}+b^{[l]})\)得到\(a^{[l]}\)

  • 反向
    计算\(da^{[l]}\),然后反向作为输入,经过一系列微分运算得到\(dw^{[l]},db^{[l]}\)(用来更新权重和偏差),以及上一层的\(da^{[l-1]}\)

推广到整个深层神经网络就如下图所示:

img_36562d5d40b5ac0ea080f8008dc86703.png

祭上神图:

img_4c267f329c42fac366ccbc5b7881bce0.png

七、参数 vs 超参数

  • 参数
    常见的参数即为\(W^{[1]},b^{[1]},W^{[2]},b^{[2]}……\)

  • 超参数
    • learning_rate: \(α\)
    • iterations(迭代次数)
    • hidden layer (隐藏层数量\(L\))
    • hidden units (隐藏层神经元数量\(n^{[l]}\))
    • 激活函数的选择
    • minibatch size
    • 几种正则化的方法
    • momentum(动力、动量)后面会提到

八、这和大脑有什么关系

主要就是说神经网络和人的大脑运行机理貌似很相似,blabla。。。







MARSGGBO原创





2017-9-2



目录
相关文章
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
489 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
937 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
10月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
409 22
|
7月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1014 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
11月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
953 6
|
9月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
359 40
|
7月前
|
机器学习/深度学习 数据采集 存储
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
186 0
|
9月前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
416 6
|
11月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
694 16

热门文章

最新文章