Push or Pull?

简介: 采用Pull模型还是Push模型是很多中间件都会面临的一个问题。消息中间件、配置管理中心等都会需要考虑Client和Server之间的交互采用哪种模型: 服务端主动推送数据给客户端? 客户端主动从服务端拉取数据? 本篇文章对比Pull和Push,结合消息中间件的场景进一步探讨有没有其他更合适的模型。

采用Pull模型还是Push模型是很多中间件都会面临的一个问题。消息中间件、配置管理中心等都会需要考虑Client和Server之间的交互采用哪种模型:

  • 服务端主动推送数据给客户端?

  • 客户端主动从服务端拉取数据?

本篇文章对比Pull和Push,结合消息中间件的场景进一步探讨有没有其他更合适的模型。

Push VS Pull

1. Push

Push即服务端主动发送数据给客户端。在服务端收到消息之后立即推送给客户端。

Push模型最大的好处就是实时性。因为服务端可以做到只要有消息就立即推送,所以消息的消费没有“额外”的延迟。

但是Push模式在消息中间件的场景中会面临以下一些问题:

  • 在Broker端需要维护Consumer的状态,不利于Broker去支持大量的Consumer的场景

  • Consumer的消费速度是不一致的,由Broker进行推送难以处理不同的Consumer的状况

  • Broker难以处理Consumer无法消费消息的情况(Broker无法确定Consumer的故障是短暂的还是永久的)

  • 大量的推送消息会加重Consumer的负载或者冲垮Consumer

Pull模式可以很好的应对以上的这些场景。

2.Pull

Pull模式由Consumer主动从Broker获取消息。

这样带来了一些好处:

  • Broker不再需要维护Consumer的状态(每一次pull都包含了其实偏移量等必要的信息)

  • 状态维护在Consumer,所以Consumer可以很容易的根据自身的负载等状态来决定从Broker获取消息的频率

Pull模式还有一个好处是可以聚合消息。

因为Broker无法预测写一条消息产生的时间,所以在收到消息之后只能立即推送给Consumer,所以无法对消息聚合后再推送给Consumer。 而Pull模式由Consumer主动来获取消息,每一次Pull时都尽可能多的获取已近在Broker上的消息。

但是,和Push模式正好相反,Pull就面临了实时性的问题。

因为由Consumer主动来Pull消息,所以实时性和Pull的周期相关,这里就产生了“额外”延迟。如果为了降低延迟来提升Pull的执行频率,可能在没有消息的时候产生大量的Pull请求(消息中间件是完全解耦的,Broker和Consumer无法预测下一条消息在什么时候产生);如果频率低了,那延迟自然就大了。

另外,Pull模式状态维护在Consumer,所以多个Consumer之间需要相互协调,这里就需要引入ZK或者自己实现NameServer之类的服务来完成Consumer之间的协调。

有没有一种方式,能结合Push和Pull的优势,同时变各自的缺陷呢?答案是肯定的。

Long-Polling

使用long-polling模式,Consumer主动发起请求到Broker,正常情况下Broker响应消息给Consumer;在没有消息或者其他一些特殊场景下,可以将请求阻塞在服务端延迟返回。

long-polling不是一种Push模式,而是Pull的一个变种。

那么:

  • 在Broker一直有可读消息的情况下,long-polling就等价于执行间隔为0的pull模式(每次收到Pull结果就发起下一次Pull请求)。

  • 在Broker没有可读消息的情况下,请求阻塞在了Broker,在产生下一条消息或者请求“超时之前”响应请求给Consumer。

以上两点避免了多余的Pull请求,同时也解决Pull请求的执行频率导致的“额外”的延迟。

注意上面有一个概念:“超时之前”。每一个请求都有超时时间,Pull请求也是。“超时之前”的含义是在Consumer的“Pull”请求超时之前。

基于long-polling的模型,Broker需要保证在请求超时之前返回一个结果给Consumer,无论这个结果是读取到了消息或者没有可读消息。

因为Consumer和Broker之间的时间是有偏差的,且请求从Consumer发送到Broker也是需要时间的,所以如果一个请求的超时时间是5秒,而这个请求在Broker端阻塞了5秒才返回,那么Consumer在收到Broker响应之前就会判定请求超时。所以Broker需要保证在Consumer判定请求超时之前返回一个结果。

通常的做法时在Broker端可以阻塞请求的时间总是小于long-polling请求的超时时间。比如long-polling请求的超时时间为30秒,那么Broker在收到请求后最迟在25s之后一定会返回一个结果。中间5s的差值来应对Broker和Consumer的始终存在偏差和网络存在延迟的情况。 (可见Long-Polling模式的前提是Broker和Consumer之间的时间偏差没有“很大”)

Long-Polling还存在什么问题吗,还能改进吗?

Dynamic Push/Pull

“在Broker一直有可读消息的情况下,long-polling就等价于执行间隔为0的pull模式(每次收到Pull结果就发起下一次Pull请求)。”

这是上面long-polling在服务端一直有可消费消息的处理情况。在这个情况下,一条消息如果在long-polling请求返回时到达服务端,那么它被Consumer消费到的延迟是:

假设Broker和Consumer之间的一次网络开销时间为R毫秒,
那么这条消息需要经历3R才能到达Consumer

第一个R:消息已经到达Broker,但是long-polling请求已经读完数据准备返回Consumer,从Broker到Consumer消耗了R
第二个R:Consumer收到了Broker的响应,发起下一次long-polling,这个请求到达Broker需要一个R
的时间
第三个R:Broker收到请求读取了这条数据,那么返回到Consumer需要一个R的时间

所以总共需要3R(不考虑读取的开销,只考虑网络开销)

另外,在这种情况下Broker和Consumer之间一直在进行请求和响应(long-polling变成了间隔为0的pull)。

考虑这样一种方式,它有long-polling的优势,同时能减少在有消息可读的情况下由Broker主动push消息给Consumer,减少不必要的请求。

消息中间件的Consumer实现

在消息中间件的Consumer中会有一个Buffer来缓存从Broker获取的消息,而用户的消费线程从这个Buffer中获取消费来消息,获取消息的线程和消费线程通过这个Buffer进行数据传递。

  • pull线程从服务端获取数据,然后写入到Buffer

  • consume线程从Buffer获取消息进行消费

有这个Buffer的存在,是否可以在long-polling请求时将Buffer剩余空间告知给Broker,由Broker负责推送数据。此时Broker知道最多可以推送多少条数据,那么就可以控制推送行为,不至于冲垮Consumer。

上面这幅图是akka的Dynamic Push/Pull示意图,思路就是每次请求会带上本地当前可以接收的数据的容量,这样在一段时间内可以由Server端主动推送消息给请求方,避免过多的请求。

akka的Dynamic Push/Pull模型非常适合应用到Consumer获取消息的场景。

Broker端对Dynamic Push/Pull的处理流程大致如下:

收到long-polling请求
while(有数据可以消费&请求没超时&Buffer还有容量) {
    读取一批消息
    Push到Consumer
    Buffer-PushedAmount 即减少Buffer容量
}

response long-polling请求
结束(等待下一个long-polling再次开始这个流程)

Consumer端对Dynamic Push/Pull的处理流程大致如下:

收到Broker的响应:

if (long-polling的response) {
    将获取的消息写入Buffer
    获取Buffer的剩余容量和其他状态
    发起新的long-polling请求
} else {
    // Dynamic Push/Pull的推送结果
    将获取的消息写入到Buffer(不发起新的请求)
}

举个例子:

Consumer发起请求时Buffer剩余容量为100,Broker每次最多返回32条消息,那么Consumer的这次long-polling请求Broker将在执行3次push(共push96条消息)之后返回response给Consumer(response包含4条消息)。

如果采用long-polling模型,Consumer每发送一次请求Broker执行一次响应,这个例子需要进行4次long-polling交互(共4个request和4个response,8次网络操作;Dynamic Push/Pull中是1个request,三次push和一个response,共5次网络操作)。

总结:

Dynamic Push/Pull的模型利用了Consumer本地Buffer的容量作为一次long-polling最多可以返回的数据量,相对于long-polling模型减少了Consumer发起请求的次数,同时减少了不必要的延迟(连续的Push之间没有延迟,一批消息到Consumer的延迟就是一个网络开销;long-polling最大会是3个网络开销)。

Dynamic Push/Pull还有一些需要考虑的问题,比如连续推送的顺序性保证,如果丢包了怎么处理之类的问题,有兴趣可以自己考虑一下(也可以私下交流)。

结语

本篇内容比较了Push、Poll、Long-Polling、Dynamic Push/Pull模型。

  • Push模型实时性好,但是因为状态维护等问题,难以应用到消息中间件的实践中。

  • Pull模式实现起来会相对简单一些,但是实时性取决于轮训的频率,在对实时性要求高的场景不适合使用。

  • Long-Polling结合了Push和Pull各自的优势,在Pull的基础上保证了实时性,实现也不会非常复杂,是比较常用的一种实现方案。

  • Dynamic Push/Pull在Long-Polling的基础上,进一步优化,减少更多不必要的请求。但是先对实现起来会复杂一些,需要处理更多的异常情况。

 

参考内容:Google->Reactive Stream Processing with Akka Streams

 

往期文章:

消息中间件核心实体(1)

消息中间件核心实体(0)

消息的写入和读取流程

NameServer模块划分

Client模块划分

Broker模块划分

消息中间件架构讨论

业务方对消息中间件的需求

消息中间件中的一些概念

什么是分布式消息中间件?

 

 

如果本文对您有帮助,点一下右下角的“推荐”
目录
相关文章
|
容器
push_back还是emplace_back?
emplace_back() 是 C++11 之后,vector容器中添加的新方法,和 push_back()一样,都是在容器末尾添加一个新的元素,相对于push_back函数,它减少了一次类的构造。不同的是emplace_back() 在效率上相比较于 push_back() 有了一定的提升。
push,pop指令
push,pop指令
258 0
auto,string.back(),string.pop_back() 不能用?使devc++拥有c++11的功能
auto,string.back(),string.pop_back() 不能用?使devc++拥有c++11的功能
314 0
auto,string.back(),string.pop_back() 不能用?使devc++拥有c++11的功能
POP3邮局协议的一些命令
  POP3全称为Post Office Protocol version3,即邮局协议第3版。它被用户代理用来邮件服务器取得邮件。POP3采用的也是C/S通信 模型,对应的RFC文 档为RFC1939。
1246 0
|
JavaScript
indexOf() 和 push()获得不重复随机数组
整体思路:先random()获取随机数,indexOf()排除相同的随机数,push()将不重复随机数添加到数组。其实一直想写这篇已经很久了,因为之前做的一个东西还不完善,有bug。所以一直拖到现在。今天中午趁机做了个总结,需要的小伙伴可以看看,做个参考。 之前本来是一个很low的去重方法: 先获得三个随机数,然后三个随机数分别互相比较,当出现相等的情况时,那个随机数再随机一次,然后返回那三个随机数。这个方法low在:每个数值都要比较一下,,数量少的时候,还可以写,数量多的时候,你一个个比一下试试看?
233 0
indexOf() 和 push()获得不重复随机数组
|
存储 C++ 容器
C++中push_back和emplace_back的区别
在 `C++11` 之后,`vector` 容器中添加了新的方法:`emplace_back()` ,和 `push_back()` 一样的是都是在容器末尾添加一个新的元素进去,不同的是 `emplace_back()` 在效率上相比较于 `push_back()` 有了一定的提升。
887 0
C++中push_back和emplace_back的区别
|
Android开发 iOS开发 开发者
code push 相关命令
code-push login 登陆 code-push logout 注销 code-push access-key ls 列出登陆的token code-push access-key rm 删除某个 access-key 输入code-push app add 即可完成注册。
1336 0