你一定想不到,实现一个AI自动化测试工具就这么简单!(基础篇)

简介:

作者:闲鱼技术-金喏

1.前言

闲鱼质量团队一直致力于交付高质量的app给用户,当前随着AI技术不断发展,TensorFlow大热,也给测试手段带来了更多种可能,本文接下来给大家介绍AI在闲鱼测试的一点实践:如何应用AI技术通过图片找bug。

2.模型选型

不需要理解业务就能发现的bug主要有整体页面空白、部分控件显示异常和文本异常这几类。对于整体空白图片,发现它们的共同特征是比较明显:大面积空白或者中心区域报错,所以选择使用TensorFlow搭建的简单CNN模型来识别正常图片和异常图片。对于文本异常这类包含乱码的图片,则是用OCR+LSTM建立了一个简单的汉字识别模型来识别图片中的文本内容后判断是否存在乱码。
训练以上模型的样本则来源于bug历史截图和mock的正向数据样本。

3.模型重训练——提高模型识别准确率

初始模型在训练时样本有限,但随着app不停更新迭代,图片检测样本数量的逐渐增多,会出现某些新页面被错误分类,要解决这类误报问题,亟需加入模型重训练。
显然靠人肉启动模型重训练并替换旧模型成本太高,所以在前端实现了个勾选图片去重训练的入口,通过Jenkins定时任务,读取所有重训练图片并执行重训练脚本,并把旧模型替换成新生成的即可。经过几轮自动迭代后模型识别准确率有大幅提升。
流程图.png

4.图片处理——提升结果的人工甄别效率

4.1特殊截图

有些截图可能是存在大面积空白,但从业务角度上来说这类图片是正确的,比如搜索中间页。此类若不处理,每次都会被识别为异常图片上报,浪费大家check的时间,若放入模型进行重训练又有导致模型不收敛的风险。为了解决这类图片,维护了一个图库,对模型识别为异常的图片,会与图库中的图片进行对比,如果与图库中任意一张相似度超过设定阈值,即认为该图片可被忽略不用上报。
特殊图片.png

4.2图片去重

目前遍历截图任务为了保证页面上所有元素都取到,单次遍历任务会至少访问同一个页面两次;同时遍历时,为了方便页面上下文分析,会对点击元素用红框标记。这带来了一个问题:待识别图片集中,同一个页面会有多张重复截图、且同一页面上可能会在不同的地方有红框标记。人工检验大量重复图片识别结果难免视觉疲劳,所以展示去重后的结果可以大大提升人工甄别效率,减少成本。

4.2.1解决办法

图片数量大,且不确定这次遍历截图了多少不同页面时,可以使用层次聚类算法解决这个问题。本文采用的是自底向上的聚类方法,即先将每一张截图分别看成一个簇,然后找出距离最小的两个簇进行合并,不断重复到预期簇或者满足其他终止条件。

4.2.2实现[2]

1)计算图片之间的距离

先将图片转换成w*h*3维向量,把向量间的欧式距离作为图片之间的距离,图片越相似,距离越小。

def get_pic_array(url,w,h):
    file = cStringIO.StringIO(urllib2.urlopen(url).read())
    img = Image.open(file)  # PIL打开图片
    img=img.resize((w, h))
    try:
        r, g, b, k = img.split()  # rgb通道分离,兼容4通道情况
    except ValueError:
        r, g, b = img.split()
    # 获得长度为(w*h)的一维数组
    r_arr = np.array(r).reshape(w * h)
    g_arr = np.array(g).reshape(w * h)
    b_arr = np.array(b).reshape(w * h)
    #将RGB三个一维数组(w*h)拼接成一个一维数组(w*h*3)
    image_arr = np.concatenate((r_arr, g_arr, b_arr))
    return image_arr

一次app遍历得到的n张图片要完成聚类,先单张图片按照上述处理后,再整体拼接成 n*(w*h*3)的矩阵,做为样本集。

2)计算簇之间距离的方法

single:两个簇中距离最近的两个样本的距离作为这簇间的距离
complete:两个簇中距离最远的两个样本的距离作为这簇间的距离
average:两个簇间样本两两距离的平均值决定,解决个别异常样本对结果对影响,但计算量比较大
ward:离差平方和,计算公式较复杂,要想了解具体计算公式和其他计算方法见计算簇之间距离的方法
通过尝试后发现ward效果比较好,所以最终选用ward作为计算簇之间距离的方法。

Z = linkage(X, 'ward')

执行上述语句后,聚类完成。

3)临界距离选择

该值直接影响聚类的效果,临界距离过小,会导致某些相似图片不能聚集到一类,临界距离过大,又会导致不是同一个页面的图片聚在一起,所以如何选一个合适的距离非常重要。
实验发现,如果图片被页面异常模型识别为异常图片时,往往这类图片之间的相似性越高,为了不错误聚类不同的异常页面,分别对识别为异常和正常的图片进行聚类,并且异常类的临界距离会设置更小一点。

5.总结与展望

目前该工具对整体页面异常的识别效果较好,文本异常的识别准确率也在丰富样本的过程中不断提升。
图片1.png
图片2.png
接下来我们会集成LabelImg工具,用TensorFlow搭建SSD模型来识别控件异常的图片,此外元素/文字布局错乱等问题页面识别、页面操作预期结果识别也在不断尝试中。使用图片处理和错误识别技术,作为质量保证的一种方法,我们会持续探索下去。

参考文档:

[1]图片聚类计算:https://haojunsui.github.io/2016/07/16/scipy-hac/

相关文章
|
26天前
|
人工智能 Kubernetes jenkins
容器化AI模型的持续集成与持续交付(CI/CD):自动化模型更新与部署
在前几篇文章中,我们探讨了容器化AI模型的部署、监控、弹性伸缩及安全防护。为加速模型迭代以适应新数据和业务需求,需实现容器化AI模型的持续集成与持续交付(CI/CD)。CI/CD通过自动化构建、测试和部署流程,提高模型更新速度和质量,降低部署风险,增强团队协作。使用Jenkins和Kubernetes可构建高效CI/CD流水线,自动化模型开发和部署,确保环境一致性并提升整体效率。
|
1月前
|
人工智能 自然语言处理 测试技术
Potpie.ai:比Copilot更狠!这个AI直接接管项目代码,自动Debug+测试+开发全搞定
Potpie.ai 是一个基于 AI 技术的开源平台,能够为代码库创建定制化的工程代理,自动化代码分析、测试和开发任务。
194 19
Potpie.ai:比Copilot更狠!这个AI直接接管项目代码,自动Debug+测试+开发全搞定
|
26天前
|
人工智能 算法 测试技术
OctoTools:斯坦福开源AI推理神器!16项测试准确率碾压GPT-4o,一键搞定复杂任务
OctoTools 是斯坦福大学推出的开源智能体框架,通过标准化工具卡片和自动化工具集优化算法,显著提升复杂推理任务的解决效率,支持多领域应用。
72 3
OctoTools:斯坦福开源AI推理神器!16项测试准确率碾压GPT-4o,一键搞定复杂任务
|
13天前
|
JSON 测试技术 网络安全
Apifox工具让我的 Socket.IO 测试效率翻倍
用了 Apifox 测试 Socket.IO 后,我整个人都升级了!不仅操作简单到令人发指,功能还贼全面,真的是 提升开发效率的神器 !
|
27天前
|
监控 jenkins 测试技术
Ansible与Jenkins:自动化工具的对比
Ansible和Jenkins是自动化领域的两大巨头。Ansible专注于配置管理和任务自动化,采用无代理架构,使用YAML定义配置,具有幂等性和可扩展性。Jenkins则擅长持续集成和持续交付(CI/CD),支持丰富的插件生态系统,适用于自动化构建、测试和部署。两者各有优势,Ansible适合配置管理与大规模部署,Jenkins则在CI/CD方面表现出色。结合使用可创建更强大的自动化工作流,提升团队生产力和软件质量。选择工具时应根据具体需求决定。
|
2月前
|
人工智能 自然语言处理 语音技术
FilmAgent:多智能体共同协作制作电影,哈工大联合清华推出 AI 驱动的自动化电影制作工具
FilmAgent 是由哈工大与清华联合推出的AI电影自动化制作工具,通过多智能体协作实现从剧本生成到虚拟拍摄的全流程自动化。
582 10
FilmAgent:多智能体共同协作制作电影,哈工大联合清华推出 AI 驱动的自动化电影制作工具
|
2月前
|
Web App开发 人工智能 JSON
AutoMouser:AI Chrome扩展程序,实时跟踪用户的浏览器操作,自动生成自动化操作脚本
AutoMouser是一款Chrome扩展程序,能够实时跟踪用户交互行为,并基于OpenAI的GPT模型自动生成Selenium测试代码,简化自动化测试流程。
205 17
AutoMouser:AI Chrome扩展程序,实时跟踪用户的浏览器操作,自动生成自动化操作脚本
|
24天前
|
机器学习/深度学习 人工智能 运维
基于AI的自动化服务器管理:解锁运维的未来
基于AI的自动化服务器管理:解锁运维的未来
74 0
|
2月前
|
机器学习/深度学习 人工智能 运维
基于AI的自动化事件响应:智慧运维新时代
基于AI的自动化事件响应:智慧运维新时代
147 11
|
2月前
|
JavaScript Java 开发工具
AutoTalk第十三期-应知必会的自动化工具-阿里云SDK支持策略(一)
AutoTalk第十三期探讨阿里云SDK支持策略,涵盖四大方面:发布策略、版本规范、更新策略及停止支持策略。重点介绍SDK的及时性、完整性、测试覆盖度和版本命名规范;并以Python部分语言版本停止支持为案例,帮助开发者了解维护策略,确保平稳过渡到新版本。

热门文章

最新文章