【阿里云总监课】存储系统设计——NVMe SSD性能影响因素一探究竟

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: NVMe SSD的性能时常捉摸不定,为此我们需要打开SSD的神秘盒子,从各个视角分析SSD性能影响因素,并思考从存储软件的角度如何最优化使用NVMe SSD,推进数据中心闪存化进程。本文从NVMe SSD的性能影响因素进行分析,并给出存储系统设计方面的一些思考。

目录
1 存储介质的变革
2 NVME SSD成为主流
2.1 NAND FLASH介质发展
2.2 软件层面看SSD——多队列技术
2.3 深入理解SSD硬件
3 影响NVME SSD的性能因素
3.1 GC对性能的影响
3.2 IO PATTERN对性能的影响
3.2.1 顺序写入Pattern对SSD性能优化的奥秘
3.2.2 读写冲突Pattern对性能的影响
4 SSD写性能分析模型
5 小结

NVMe SSD的性能时常捉摸不定,为此我们需要打开SSD的神秘盒子,从各个视角分析SSD性能影响因素,并思考从存储软件的角度如何最优化使用NVMe SSD,推进数据中心闪存化进程。本文从NVMe SSD的性能影响因素进行分析,并给出存储系统设计方面的一些思考。

1 存储介质的变革
近几年存储行业发生了翻天覆地的变化,半导体存储登上了历史的舞台。和传统磁盘存储介质相比,半导体存储介质具有天然的优势。无论在可靠性、性能、功耗等方面都远远超越传统磁盘。目前常用的半导体存储介质是NVMe SSD,采用PCIe接口方式与主机进行交互,大大提升了性能,释放了存储介质本身的性能。通常NVMe SSD内部采用NAND Flash存储介质进行数据存储,该介质本身具有读写不对称性,使用寿命等问题。为此在SSD内部通过FTL(Flash Translation Layer)解决NAND Flash存在的问题,为上层应用软件呈现和普通磁盘相同的应用接口和使用方式。

image001

如上图所示,随着半导体存储介质的发展,计算机系统的IO性能得到了飞速发展。基于磁介质进行数据存储的磁盘和处理器CPU之间一直存在着棘手的剪刀差性能鸿沟。随着存储介质的演进与革新,这种性能剪刀差将不复存在。从整个系统的角度来看,IO性能瓶颈正从后端磁盘往处理器和网络方向转移。如下图性能数据所示,在4KB访问粒度下,NVMe SSD和15K转速磁盘相比,每秒随机读IO处理能力提升了将近5000倍;每秒随机写IO处理能力提升了1000多倍。随着非易失性存储介质的进一步发展,半导体存储介质的性能将进一步提升,并且会具有更好的IO QoS能力。
image003

存储介质的革命一方面给存储系统性能提升带来了福音;另一方面对存储系统的设计带来了诸多挑战。原有面向磁盘设计的存储系统不再适用于新型存储介质,面向新型存储介质需要重新设计更加合理的存储软件堆栈,发挥存储介质的性能,并且可以规避新介质带来的新问题。面向新型存储介质重构存储软件栈、重构存储系统是最近几年存储领域的热门技术话题。

在面向NVMe SSD进行存储系统设计时,首先需要对NVMe SSD本身的特性要非常熟悉,需要了解SSD性能的影响因素。在设计过程中需要针对SSD的特性通过软件的方式进行优化。本文对SSD进行简要介绍,并从性能影响因素角度出发,对NVMe SSD进行深入剖析,在此基础上给出闪存存储设计方面的一些思考。

**2 NVMe SSD成为主流
2.1 NAND Flash介质发展**
目前NVMe SSD主流采用的存储介质是NAND Flash。最近几年NAND Flash技术快速发展,主要发展的思路有两条:第一,通过3D堆叠的方式增加NAND Flash的存储密度;第二,通过增加单Cell比特数来提升NAND Flash的存储密度。3D NAND Flash已经成为SSD标配,目前主流发布的SSD都会采用3D NAND Flash技术工艺。从cell的角度来看,目前单个cell可以表示3bit,这就是通常所说的TLC NAND Flash。今年单个cell的bit存储密度又提升了33%,可以表示4bit,向前演进至QLC NAND Flash。NAND Flash的不断演进,推动了SSD存储密度不断提升。截止到今天,单个3.5寸SSD盘可以做到128TB的容量,远远超过了磁盘的容量。下图是近几年NAND Flash技术的发展、演进过程。
image005

从上图可以看出,NAND Flash在不断演进的过程中,一些新的非易失性内存技术也开始发展。Intel已经推出了AEP内存存储介质,可以预计,未来将会是非易失性内存和闪存共存的半导体存储时代。

2.2 软件层面看SSD——多队列技术
从软件接口的角度来看,NVMe SSD和普通的磁盘没有太多的区别,在Linux环境下都是标准块设备。由于NVMe SSD采用了最新的NVMe协议标准,因此从软件堆栈的角度来看,NVMe SSD的软件栈简化了很多。在NVMe标准中,和传统的SATA/SAS相比,一个重大的差别是引入了多队列机制,如下图所示。
image007

何为多队列技术?主机(X86 Server)与SSD进行数据交互的模型采用“生产者-消费者”模型,采用生产者-消费者队列进行数据交互。在原有的AHCI规范中,只定义了一个交互队列,那么主机与HDD之间的数据交互只能通过一个队列通信,多核处理器也只能通过一个队列与HDD进行数据交互。在磁盘存储时代,由于磁盘是慢速设备,所以一个队列也就够用了。多个处理器核通过一个共享队列与磁盘进行数据交互,虽然处理器之间会存在资源竞争,但是相比磁盘的性能,处理器之间竞争所引入的开销实在是微乎其微,可以忽略。在磁盘存储时代,单队列有其他的好处,一个队列存在一个IO调度器,可以很好的保证提交请求的IO顺序最优化。

和磁盘相比,半导体存储介质具有很高的性能,AHCI原有的规范不再适用,原有的假设也已经不复存在,在此背景下NVMe规范诞生了。NVMe规范替代了原有的AHCI规范,并且软件层面的处理命令也进行了重新定义,不再采用SCSI/ATA命令规范集。在NVMe时代,外设和处理器之间的距离更近了,不再需要像SAS一样的面向连接的存储通信网络。相比于以前的AHCI、SAS等协议规范,NVMe规范是一种非常简化,面向新型存储介质的协议规范。该规范的推出,将存储外设一下子拉到了处理器局部总线上,性能大为提升。并且主机和SSD处理器之间采用多队列的设计,适应了多核的发展趋势,每个处理器核与SSD之间可以采用独立的硬件Queue Pair进行数据交互。

从软件的角度来看,每个CPU Core都可以创建一对Queue Pair和SSD进行数据交互。Queue Pair由Submission Queue与Completion Queue构成,通过Submission queue发送数据;通过Completion queue接受完成事件。SSD硬件和主机驱动软件控制queue的Head与Tail指针完成双方的数据交互。

2.3 深入理解SSD硬件
和磁盘相比,NVMe SSD最大的变化在于存储介质发生了变化。目前NVMe SSD普遍采用3D NAND Flash作为存储介质。NAND Flash内部有多个存储阵列单元构成,采用floating gate或者charge trap的方式存储电荷,通过存储电荷的多少来保持数据存储状态。由于电容效应的存在、磨损老化、操作电压干扰等问题的影响,NAND Flash天生会存在漏电问题(电荷泄漏),从而导致存储数据发生变化。因此,从本质上讲,NAND Flash是一种不可靠介质,非常容易出现Bit翻转问题。SSD通过控制器和固件程序将这种不可靠的NAND Flash变成了可靠的数据存储介质。

为了在这种不可靠介质上构建可靠存储,SSD内部做了大量工作。在硬件层面,需要通过ECC单元解决经常出现的比特翻转问题。每次数据存储的时候,硬件单元需要为存储的数据计算ECC校验码;在数据读取的时候,硬件单元会根据校验码恢复被破坏的bit数据。ECC硬件单元集成在SSD控制器内部,代表了SSD控制器的能力。在MLC存储时代,BCH编解码技术可以解决问题,4KB数据中存在100bit翻转时可以纠正错误;在TLC存储时代,bit错误率大为提升,需要采用更高纠错能力的LDPC编解码技术,在4KB出现550bit翻转时,LDPC硬解码仍然可以恢复数据。下图对比了LDPC硬解码、BCH以及LDPC软解码之间的能力, 从对比结果可以看出,LDPC软解码具有更强的纠错能力,通常使用在硬解码失效的情况下。LDPC软解码的不足之处在于增加了IO的延迟。
image009

在软件层面,SSD内部设计了FTL(Flash Translation Layer),该软件层的设计思想和log-structured file system设计思想类似。采用log追加写的方式记录数据,采用LBA至PBA的地址映射表记录数据组织方式。Log-structured系统最大的一个问题就是垃圾回收(GC)。因此,虽然NAND Flash本身具有很高的IO性能,但受限于GC的影响,SSD层面的性能会大受影响,并且存在十分严重的IO QoS问题,这也是目前标准NVMe SSD一个很重要的问题。SSD内部通过FTL解决了NAND Flash不能inplace write的问题;采用wear leveling算法解决了NAND Flash磨损均衡问题;通过data retention算法解决了NAND Flash长时间存放漏电问题;通过data migration方式解决read diatribe问题。FTL是NAND Flash得以大规模使用的核心技术,是SSD的重要组成部分。
image011

NAND Flash内部本身具有很多并发单元,如上图所示,一个NAND Flash芯片由多个Target构成,每个Target包含多个Die。每个Die是一个独立的存储单元,一个Die由多个Plane构成,多个Plane之间共享一套操作总线,多个Plane可以组成一个单元并发操作,构建Multi-plane。一个Plane由若干个Block构成,每个Block是一个擦除单元,该单元的大小也决定了SSD软件层面的GC回收粒度。每个Block由多个page页构成,每个Page是最小写入(编程)单元,通常大小为16KB。SSD内部软件(固件)需要充分利用这些并发单元,构建高性能的存储盘。

一块普通NVMe SSD的物理硬件结构简单,由大量的NAND Flash构成,这些NAND Flash通过SOC(SSD控制器)进行控制,FTL软件运行在SOC内部,并通过多队列的PCIe总线与主机进行对接。为了提升性能,企业级SSD需要板载DRAM,DRAM资源一方面可以用来缓存数据,提升写性能;另一方面用来缓存FTL映射表。企业级SSD为了提升性能,通常采用Flat mapping的方式,需要占据较多的内存(0.1%)。内存容量的问题也限制了大容量NVMe SSD的发展,为了解决内存问题,目前一种可行的方法是增大sector size。标准NVMe SSD的sector size为4KB,为了进一步增大NVMe SSD的容量,有些厂商已经开始采用16KB的sector size。16KB Sector size的普及应用,会加速大容量NVMe SSD的推广。

3 影响NVMe SSD的性能因素
NVMe SSD 厂商Spec给出的性能非常完美,前面也给出了NVMe SSD和磁盘之间的性能对比,NVMe SSD的性能的确比磁盘高很多。但在实际应用过程中,NVMe SSD的性能可能没有想象中的那么好,并且看上去不是特别的稳定,找不到完美的规律。和磁盘介质相比,SSD的性能和很多因素相关,分析SSD的性能影响因素,首先需要大体了解SSD构成的主要部分。如下图所示,其主要包括主机CPU、PCIe互连带宽、SSD控制器及FTL软件、后端NAND Flash带宽、NAND Flash介质。影响SSD性能的主要因素可以分成硬件、软件和客观环境三大部分,具体分析如下。
image013

1, 硬件因素
a) NAND Flash本身。不同类型的NAND Flash本身具有不同的性能,例如SLC的性能高于MLC,MLC的性能优于TLC。选择不同的工艺、不同类别的NAND Flash,都会具有不同的性能。
b) 后端通道数(CE数量)及总线频率。后端通道数决定了并发NAND Flash的数量,决定了并发能力。不同的SSD控制器支持不同数量的通道数,也决定了SSD的后端吞吐带宽能力。NAND Flash Channel的总线频率也决定了访问Flash的性能。
c) SSD控制器的处理能力。SSD控制器中会运行复杂的FTL(Flash Translation Layer)处理逻辑,将逻辑块读写映射转换成NAND Flash 读写请求。在大数据块读写时,对处理器能力要求不是很高;在小数据块读写时,对处理器能力要求极高,处理器能力很容易成为整个IO系统的性能瓶颈点。
d) SSD控制器架构。通常SSD控制器采用SMP或者MPP两种架构,早期的控制器通常采用MPP架构,多个小处理器通过内部高速总线进行互连,通过硬件消息队列进行通信。内存资源作为独立的外设供所有的处理器进行共享。这种架构和基于消息通信的分布式系统类似。MPP架构的很大优势在于性能,但是编程复杂度较高;SMP架构的性能可扩展性取决于软件,编程简单,和在x86平台上编程相似。不同的控制器架构会影响到SSD的总体性能,在SSD设计时,会根据设计目标,选择不同类型的SSD控制器。
e) 内存支持容量。为了追求高性能,SSD内部的映射资源表会常驻内存,映射表的内存占用大小是盘容量的0.1%,当内存容量不够大时,会出现映射表换入换出的问题,影响到性能。
f) PCIe的吞吐带宽能力。PCIe前端带宽体现了SSD的前端吞吐能力,目前NVMe SSD采用x4 lane的接入方式,上限带宽为3GB/s,当后端NAND Flash带宽和处理器能力足够时,前端PCIe往往会成为性能瓶颈点。NAND Flash具有很高的读性能,目前来看,SSD的读性能在很大程度上受限于PCIe总线,因此需要快速推进PCIe4.0标准。
g) 温度对性能造成影响。在NAND Flash全速运行的情况下,会产生较大的散热功耗,当温度高到一定程度时,系统将会处于不正常的工作状态,为此,SSD内部做了控温系统,通过温度检测系统来调整SSD性能,从而保证系统温度维持在阈值之内。调整温度会牺牲性能,本质上就是通过降低SSD性能来降温。因此,当环境温度过高时,会影响到SSD的性能,触发SSD内部的温度控制系统,调节SSD的性能。
h) 使用寿命对性能造成影响。NAND Flash在不断擦除使用时,Flash的bit error会不断上升,错误率的提升会影响到SSD的IO性能。

2, 软件因素
a) 数据布局方式。数据布局方法需要充分考虑NAND Flash中的并发单元,如何将IO操作转换成NAND Flash的并发操作,这是数据布局需要考虑的问题。例如,采用数据交错的方式在多通道page上进行数据布局,通过这种方式可以优化顺序带宽。
b) 垃圾回收/wear leveling调度方法。数据回收、wear leveling、data retention等操作会产生大量的NAND Flash后端流量,后端流量直接反应了SSD的写放大系数,也直接体现在后端带宽的占用。垃圾回收等产生的流量也可以称之为背景流量,背景流量会直接影响到前端用户性能。因此需要对背景流量和用户流量之间进行合理调度,使得用户IO性能达到最佳。
c) OP预留。为了解决坏块、垃圾回收等问题,在SSD内部预留了一部分空闲资源,这些资源被称之为OP(Overprovisioning)。OP越大,GC过程中平均搬移的数据会越少,背景流量会越小,因此,写放大降低,用户IO性能提升。反之,OP越小,性能会越低,写放大会越大。在SSD容量较小的时代,为了提升SSD的使用寿命,往往OP都设置的比较大。
d) Bit error处理影响性能。在SSD内部采用多种机制来处理NAND Flash所产生的Bit error。ECC纠错、read retry、soft LDPC以及RAIN都是用来纠正bit翻转导致的错误。当Bit错误率增加时,软件处理的开销越大,在bit控制在一定范围之内,完全可以通过硬件进行纠正。一旦软件参与到bit纠正的时候,会引入较大的性能开销。
e) FTL算法。FTL算法会影响到SSD性能,对于不同用途的SSD,FTL的设计与实现是完全不同的,企业级SSD为了追求高性能,通常采用Flat mapping的方式,采用大内存缓存映射表;消费级SSD为了追求低成本,通常采用元数据换入换出的方式,并且采用pSLC+TLC的组合方式进行分层存储,也可以采用主机端内存缓存元数据信息,但是这些方式都会影响到性能。
f) IO调度算法。NAND Flash具有严重的性能不对称性,Flash Erase和Program具有ms级延迟,Flash read的延迟在us级。因此,如何调度Erase、Program以及read是SSD后端设计需要考虑的问题。另外,前端IO以及背景IO之间的调度也是需要权衡考虑,通过IO调度可以达到最佳性能表现。在IO调度过程中,还需要利用NAND Flash的特性,例如Program Suspension,通过这些特性的利用,最优化SSD前端IO性能。
g) 驱动软件。驱动软件运行在主机端,通常分为内核态和用户态两大类,内核态驱动会消耗较多的CPU资源,存在频繁上下文切换、中断处理,因此性能较低;用户态驱动通常采用Polling IO处理模式,去除了上下文切换,可以充分提升CPU效率,提升整体IO性能。
h) IO Pattern对性能产生影响。IO Pattern影响了SSD内部的GC数据布局,间接影响了GC过程中的数据搬移量,决定了后端流量。当IO Pattern为全顺序时,这种Pattern对SSD内部GC是最为友好的,写放大接近于1,因此具有最好的性能;当IO Pattern为小块随机时,会产生较多的GC搬移数据量,因此性能大为下降。在实际应用中,需要通过本地文件系统最优化IO Pattern,获取最佳性能。

3, 客观因素
a) 使用时间越长会导致SSD性能变差。使用时间变长之后,SSD内部NAND Flash的磨损会加重,NAND Flash磨损变大之后会导致bit错误率提升。在SSD内部存在一套完整的bit错误恢复机制,由硬件和软件两大部分构成。当bit错误率达到一定程度之后,硬件机制将会失效。硬件机制失效之后,需要通过软件(Firmware)的方式恢复翻转的bit,软件恢复将会带来较大的延迟开销,因此会影响到SSD对外表现的性能。在有些情况下,如果一块SSD在掉电情况下放置一段时间之后,也可能会导致性能变差,原因在于SSD内部NAND Flash中存储电荷的漏电,放置一段时间之后导致bit错误率增加,从而影响性能。SSD的性能和时间相关,本质上还是与NAND Flash的比特错误率相关。
b) 环境温度也会对性能造成影响。为了控制SSD温度不能超过上限值,在SSD内部设计有一套温度负反馈机制,该机制通过检测的温度对NAND Flash后端带宽进行控制,达到降低温度的效果。如果一旦温度负反馈机制开始工作,那么NAND Flash后端带宽将会受到限制,从而影响前端应用IO的性能。

下面从软件的角度出发,重点阐述GC以及IO Pattern对SSD性能的影响。

3.1 GC对性能的影响
SSD内部有一个非常厚重的软件层,该软件层用来解决NAND Flash的问题,采用log-structured的方式记录数据。Log-structured方式引入了GC的问题,对于前端业务来讲,GC流量就是背景噪声。GC流量不是时时刻刻存在的,因此,SSD对外体现性能大幅度波动。当SSD为空盘时,性能会非常好,为最佳性能;当SSD被用过一段时间之后,性能会大幅降低。其中GC起到了很重要的作用。企业级SSD在发布Spec的时候,都会发布SSD盘的稳态性能。在性能测试的时候,需要对盘进行老化预处理。通常预处理的方法是顺序写满盘,然后再随机两遍写盘,预处理完成之后,再对盘进行随机读写测试,得到Spec中定义的值。稳态值基本可以认为是盘的下限性能。

image015

上图所示是多个厂商的盘在空盘和稳态情况下的性能对比,由此可见稳态情况和空盘情况下的性能差距很大。在稳态情况下,SSD内部的GC会全速运行,会占用较多的NAND Flash后端带宽。背景流量和前端数据流的比例也就体现了SSD盘的写放大系数,写放大系数越大,背景流量占用带宽越多,SSD对外体现的前端性能也就越差。写放大系数很多因素相关,例如OP、应用IO Pattern等。如果应用IO Pattern比较好,那么可以降低写放大系数,背景噪声流就会减少,前端业务的性能会提升。例如,在SSD完全顺序写入的情况下,写放大系数可以接近于1,此时GC产生的数据流很少,背景流量基本没有,后端带宽基本被业务数据流占用,因此对外体现的性能会很好。

GC是影响性能的重要因素,除了影响性能之外,GC会增大写放大,对SSD的使用寿命产生影响。从软件层面的角度考虑,可以通过优化应用IO Pattern的方式优化SSD内部GC,从而进一步提升SSD的性能,优化使用寿命。对于下一代更为廉价的QLC SSD介质,就需要采用这种优化思路,否则无法很好的满足实际业务的应用需求。

3.2 IO Pattern对性能的影响
IO Pattern会对SSD的性能产生严重影响,主要表现在如下几个方面:
1, 不同的IO Pattern会产生不同的写放大系数,不同的写放大系数占用后端NAND Flash带宽不同。当前端应用对SSD采用完全顺序的方式进行写入时,此时是最佳的IO Pattern,对于SSD而言写放大系数接近1,SSD内部的背景流量基本可以忽略,前端性能达到最佳。在实际应用中,很难采用这种完全顺序的数据写模型,但可以通过优化逼近顺序写入。
2, 不同请求大小的IO之间会产生干扰;读写请求之间会产生干扰。小请求会受到大请求的干扰,从而导致小请求的延迟增加,这个比较容易理解,在HDD上同样会存在这种情况。由于NAND Flash介质存在严重的读写不对称性,因此读写请求之间也会互相干扰,尤其是写请求对读请求产生严重的性能影响。

3.2.1 顺序写入Pattern对SSD性能优化的奥秘

在针对闪存系统的设计中,需要考虑IO Pattern对性能产生的影响,通过软件的优化来最优化SSD的使用。在实际应用中完全顺序写入的IO Pattern基本上是不存在的,除非用作顺序写入的日志设备。对于顺序写入优化性能这个结论,需要从SSD内部实现来深入理解,知道根源之后,可以采用合理的方式来逼近顺序写入的模式,从而最优化SSD的性能。

SSD内部采用log-structured的数据记录模式,并发写入的IO数据按照时间顺序汇聚成大数据块,合并形成的大数据块以Page stripe的方式写入NAND Flash。多个Page stripe会被写入同一个GC单元(Chunk or Superblock),当一个GC单元被写完成之后,该GC单元进入sealed模式(只读),分配新的GC单元写新的数据。在这种模式下,如果多个业务的数据流并发随机的往SSD中写入数据,那么多个应用的数据就会交错在一起被存储到同一个GC单元中。如下图所示,不同应用的数据生命周期不同,当需要回收一个GC单元的时候,会存在大量数据的迁移,这些迁移的数据就会形成写放大,影响性能和使用寿命。

image017

不同应用的数据交错存储在同一个GC单元,本质上就是不同冷热程度的数据交错存储的问题。从GC的角度来讲,相同冷热程度的数据存储在同一个GC单元上是最佳的,为此三星推出了Multi-stream SSD,该SSD就允许不同应用的数据存储到不同的Stream单元(GC单元),从而提升GC效率,降低写放大。Multi-stream是一种显式的设计方式,需要更改SSD接口以及应用程序。从IO Pattern的角度考虑,可以通过顺序大块的方式也可以逼近类似的效果。假设操作SSD只存在一个线程,不同的应用都采用大数据块的方式写入数据,那么在一个时间片段内只存在一个应用的数据往SSD中写入数据,那么在一个GC单元内存储的数据会变得有序和规则。如下图所示,采用上述方法之后,一个GC单元内存储的数据将会变得冷热均匀。在GC过程中会大大减少数据的搬移,从而减少背景流量。

image019

在实际应用中,上述IO Pattern很难产生,主要是应用很难产生非常大粒度的请求。为此在存储系统设计过程中,可以引入Optane高性能存储介质作为SSD的写缓存。前端不同业务的写请求首先写到Optane持久化介质中,在Optane持久化介质中聚合形成大数据块。一旦聚合形成大数据块之后,再写入SSD,通过这种方式可以最大程度的逼近SSD顺序写入过程,提升SSD的性能和使用寿命。
**
3.2.2 读写冲突Pattern对性能的影响**
如下图所示,NAND Flash介质具有很强的读写不对称性。Block Erase和Page Program的延迟会远远高于Page Read所耗费的时间。那么在这种情况下,如果read请求在同一个Flash Channel上和Erase、Program操作冲突,那么read操作将会被Erase/program操作影响。这是在读写混合情况下,读性能会受到影响的重要因素。

image021

在实际应用过程中,经常会发现应用的测试结果和SSD Spec对不上,会比Spec给出的值要来的低。Spec给出的值通常为纯读或者纯写情况下的性能指标,在读写混合的场景下,性能表现和Spec给出的值就会存在非常大的出入。

对于不同的SSD,通过测试可以发现在读写混合情况下的性能表现差距会比较大。在SSD处于稳态条件下,应用随机读的情况下,如果引入一个压力不是很大的顺序写,那么会发现不同SSD的抗干扰能力是不同的。有些SSD在写干扰的情况下,读性能会急剧下降,延迟快速上升,QoS性能得不到保证。下图是两个SSD在相同情况下的测试结果,从结果来看,有些SSD的抗写干扰能力比较强,读性能不会急剧下降。

image023

为什么有些SSD会具备比较强的抗写干扰能力呢?其中的奥秘就在于SSD内部的IO调度器。IO调度器会对write、read 和Erase请求进行调度处理,该调度器算法的不同就会表现出不同的抗干扰能力。目前很多NAND Flash可以支持Program/Erase Suspension的功能,在IO调度处理的过程中,为了提升读性能,降低读请求延迟,可以采用Suspension命令对Program/Erase命令暂停,对read请求优先调度处理。

读写冲突是SSD内部影响IO QoS的重要因素。在SSD内部通过IO调度器的优化可以提升SSD性能的QoS能力,但是还是无法与存储软件结合来协同优化QoS。为了达到最佳的SSD性能QoS,需要关注Openchannel技术。Openchannel其实只是一种软硬件层次划分的方法,通常来讲,SSD内部的逻辑可以划分为面向NAND资源的物理资源管理层以及面向数据布局的资源映射层。物理资源管理由于和NAND Flash密切相关,因此可以放到SSD内部。传统的NVMe SSD需要对外暴露标准的块设备接口,因此需要在SSD内部实现资源映射层。从端至端的角度来看,资源映射层可以与存储软件层结合起来,为此将资源映射层从SSD内部剥离出来,集成至存储软件层。一旦资源映射层从SSD内部剥离之后,需要定义一个新的SSD接口,其中的一种接口方式就是Openchannel。

盘古分布式存储针对SSD QoS问题进行了大量研究,提出了Object SSD的概念,Object SSD也是一种新的SSD接口方式,其采用对象方式对SSD进行读写删操作,每个对象采用Append write操作方式。这种接口方式可以很好的与分布式存储无缝结合。采用Object SSD之后,SSD内部的大量工作被简化,IO的调度会更加灵活,存储软件与SSD协同配合,达到IO性能的最优化,以及QoS的最大化。

image025

4 SSD写性能分析模型
SSD内部的数据流分成两大类,一类为前端用户数据流;另一类为内部背景数据流。前端用户数据流和背景数据流会汇聚成NAND Flash后端流量。当背景数据流不存在时,NAND Flash带宽会被用户数据流全部占据,此时SSD对外表现的性能达到最佳。当SSD具有较大写放大时,会产生很大的背景数据流,背景流会抢占NAND Flash带宽,导致前端用户IO性能降低。为了稳定前端IO性能,在SSD内部的调度器会均衡前端和背景流量,保证前端性能的一致性。背景流量的占比反应了SSD的写放大系数,因此,站在NAND Flash带宽占用的角度可以分析SSD在稳态情况下的性能。

在此,假设写放大系数为WA,顺序写情况下的总带宽数为B,用户写入流量(随机写入流量)为U。那么,由于GC写放大造成的背景流量为:(WA - 1)* U
写放大流量为一读一写,都会占用带宽,因此,总带宽可以描述为:
2 (WA - 1) U + U = B
因此,可以得到:
U = B / (2(WA - 1) + 1) = B / (2 WA - 1)
上述公式表述了前端用户流量和NAND Flash总带宽、写放大系数之间的关系。

根据Spec,Intel P4500的顺序写带宽为1.9GB/s,按照上述公式,在随机访问模式下的带宽为: 1900 / (2 * 4 - 1) = 270MB/s,IOPS为67K,根据该公式推导的结果和Spec给出的结果相同。

下图是Intel P4500和Samsung PM963随机写延迟和推导公式之间的对比。结果非常吻合。
image027

由此可以推出,随机写性能由SSD内部后端带宽以及写放大系数来决定。因此,从存储软件的角度出发,我们可以通过优化IO Pattern的方式减小写放大系数,从而可以提升SSD的随机写性能。

5 小结
闪存存储技术正在飞速发展,闪存介质、SSD控制器、存储系统软件、存储硬件平台都在围绕闪存日新月异的发展。闪存给数据存储带来的价值显而易见,数据中心闪存化是重要发展趋势。NVMe SSD性能受到很多因素的影响,在软件层面可以通过IO Pattern优化SSD的性能,使得整体存储系统的性能达到最佳。

点击了解“阿里云新品发布会频道”:
https://promotion.aliyun.com/ntms/act/cloud/product.html

【阿里云总监系列课】重磅上线!聚焦人工智能、弹性计算、数据库等热门领域,首次集齐12位阿里云技术高管,耗时半年精心打磨,从理论到实践倾囊相授,从零开始绘制技术大牛成长路径,限时直播课程免费报名中!欢迎戳“https://yq.aliyun.com/promotion/689”免费报名学习。
IMG_1996

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
8月前
|
存储 缓存 算法
【自己动手画CPU】存储系统设计
博文“【自己动手画CPU】存储系统设计”探讨了在自制 CPU 中存储系统的设计。存储系统是计算机中至关重要的组成部分,负责存储和检索数据。文章介绍了在 DIY CPU 中实现存储系统的关键考虑因素,包括存储器的类型、存储器与 CPU 的连接方式以及数据存取的速度和效率。通过深入探讨存储系统的设计原理和实现方式,读者可以更好地理解计算机内部结构,并且为自己动手设计和构建 CPU 提供了有益的指导和启发。
193 0
【自己动手画CPU】存储系统设计
|
8月前
|
存储 缓存 监控
【分布式技术专题】「缓存解决方案」一文带领你好好认识一下企业级别的缓存技术解决方案的运作原理和开发实战(场景问题分析+性能影响因素)
【分布式技术专题】「缓存解决方案」一文带领你好好认识一下企业级别的缓存技术解决方案的运作原理和开发实战(场景问题分析+性能影响因素)
128 0
|
存储 缓存 数据可视化
CPU缓存读写以及一致性问题,你大学课堂睡过去的现在再温习下,绝对受益颇多
CPU缓存读写以及一致性问题,你大学课堂睡过去的现在再温习下,绝对受益颇多
|
存储 自然语言处理 NoSQL
内存数据库容量极致优化赛题解析 | 学习笔记
快速学习内存数据库容量极致优化赛题解析
内存数据库容量极致优化赛题解析 | 学习笔记
|
存储 缓存 弹性计算
阿里云Optane+QLC存储实践案例分享
本文主要分享主题在阿里云本地盘存储中,基于Optane SSD和SPDK WSR的功能,降低QLC SSD的写放大。
|
存储 缓存 NoSQL
系统性能提升利刃 | 缓存技术使用的实践与思考
导读 按照现在流行的互联网分层架构模型,最简单的架构当属Web响应层+DB存储层的架构。从最开始的单机混合部署Web和DB,到后来将二者拆分到不同物理机以避免共享机器硬件带来的性能瓶颈,再随着流量的增长,Web应用变为集群部署模式,而DB则衍生出主从机来保证高可用,同时便于实现读写分离。
|
存储 固态存储 数据库
红包场景下,高性能本地存储技术将硬件性能发挥到极致
2017年新春红包在参与人数和业务峰值上都到达了历史新高,其中红包除夕开奖峰值达到90W/s。为了应对红包场景,阿里云设计和实现了高性能本地存储,从而将硬件性能发挥到极致,圆满支撑红包活动的展开。
6383 0

热门文章

最新文章