spark RDD,reduceByKey vs groupByKey

简介:

Spark 中有两个类似的api,分别是 reduceByKey 和 groupByKey 。这两个的功能类似,但底层实现却有些不同,那么为什么要这样设计呢?我们来从源码的角度分析一下。

先看两者的调用顺序(都是使用默认的Partitioner,即defaultPartitioner)

所用 spark 版本:spark 2.1.0

先看reduceByKey

Step1

  def reduceByKey(func: (V, V) => V): RDD[(K, V)] = self.withScope {
    reduceByKey(defaultPartitioner(self), func)
  }

Setp2

  def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = self.withScope {
    combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)
  }

Setp3

def combineByKeyWithClassTag[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {
    require(mergeCombiners != null, "mergeCombiners must be defined") // required as of Spark 0.9.0
    if (keyClass.isArray) {
      if (mapSideCombine) {
        throw new SparkException("Cannot use map-side combining with array keys.")
      }
      if (partitioner.isInstanceOf[HashPartitioner]) {
        throw new SparkException("HashPartitioner cannot partition array keys.")
      }
    }
    val aggregator = new Aggregator[K, V, C](
      self.context.clean(createCombiner),
      self.context.clean(mergeValue),
      self.context.clean(mergeCombiners))
    if (self.partitioner == Some(partitioner)) {
      self.mapPartitions(iter => {
        val context = TaskContext.get()
        new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context))
      }, preservesPartitioning = true)
    } else {
      new ShuffledRDD[K, V, C](self, partitioner)
        .setSerializer(serializer)
        .setAggregator(aggregator)
        .setMapSideCombine(mapSideCombine)
    }
  }

姑且不去看方法里面的细节,我们会只要知道最后调用的是 combineByKeyWithClassTag 这个方法。这个方法有两个参数我们来重点看一下,

def combineByKeyWithClassTag[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null)

首先是 partitioner 参数 ,这个即是 RDD 的分区设置。除了默认的 defaultPartitioner,Spark 还提供了 RangePartitioner 和 HashPartitioner 外,此外用户也可以自定义 partitioner 。通过源码可以发现如果是 HashPartitioner 的话,那么是会抛出一个错误的。

然后是 mapSideCombine 参数 ,这个参数正是 reduceByKey 和 groupByKey 最大不同的地方,它决定是是否会先在节点上进行一次 Combine 操作,下面会有更具体的例子来介绍。

然后是groupByKey

Step1

  def groupByKey(): RDD[(K, Iterable[V])] = self.withScope {
    groupByKey(defaultPartitioner(self))
  }

Step2

  def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = self.withScope {
    // groupByKey shouldn't use map side combine because map side combine does not
    // reduce the amount of data shuffled and requires all map side data be inserted
    // into a hash table, leading to more objects in the old gen.
    val createCombiner = (v: V) => CompactBuffer(v)
    val mergeValue = (buf: CompactBuffer[V], v: V) => buf += v
    val mergeCombiners = (c1: CompactBuffer[V], c2: CompactBuffer[V]) => c1 ++= c2
    val bufs = combineByKeyWithClassTag[CompactBuffer[V]](
      createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)
    bufs.asInstanceOf[RDD[(K, Iterable[V])]]
  }

Setp3

def combineByKeyWithClassTag[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {
    require(mergeCombiners != null, "mergeCombiners must be defined") // required as of Spark 0.9.0
    if (keyClass.isArray) {
      if (mapSideCombine) {
        throw new SparkException("Cannot use map-side combining with array keys.")
      }
      if (partitioner.isInstanceOf[HashPartitioner]) {
        throw new SparkException("HashPartitioner cannot partition array keys.")
      }
    }
    val aggregator = new Aggregator[K, V, C](
      self.context.clean(createCombiner),
      self.context.clean(mergeValue),
      self.context.clean(mergeCombiners))
    if (self.partitioner == Some(partitioner)) {
      self.mapPartitions(iter => {
        val context = TaskContext.get()
        new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context))
      }, preservesPartitioning = true)
    } else {
      new ShuffledRDD[K, V, C](self, partitioner)
        .setSerializer(serializer)
        .setAggregator(aggregator)
        .setMapSideCombine(mapSideCombine)
    }
  }

结合上面 reduceByKey 的调用链,可以发现最终其实都是调用 combineByKeyWithClassTag 这个方法的,但调用的参数不同。
reduceByKey的调用

combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)

groupByKey的调用

combineByKeyWithClassTag[CompactBuffer[V]](
      createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)

正是两者不同的调用方式导致了两个方法的差别,我们分别来看

  • reduceByKey的泛型参数直接是[V],而groupByKey的泛型参数是[CompactBuffer[V]]。这直接导致了 reduceByKey 和 groupByKey 的返回值不同,前者是RDD[(K, V)],而后者是RDD[(K, Iterable[V])]
  • 然后就是mapSideCombine = false 了,这个mapSideCombine 参数的默认是true的。这个值有什么用呢,上面也说了,这个参数的作用是控制要不要在map端进行初步合并(Combine)。可以看看下面具体的例子。

1011838-20181027094209726-2067397752.png

1011838-20181027094214131-2054597375.png

从功能上来说,可以发现 ReduceByKey 其实就是会在每个节点先进行一次合并的操作,而 groupByKey 没有。

这么来看 ReduceByKey 的性能会比 groupByKey 好很多,因为有些工作在节点已经处理了。那么 groupByKey 为什么存在,它的应用场景是什么呢?我也不清楚,如果观看这篇文章的读者知道的话不妨在评论里说出来吧。非常感谢!

相关文章
|
2月前
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
|
3月前
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
49 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
3月前
|
消息中间件 分布式计算 Kafka
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
40 0
|
3月前
|
SQL 分布式计算 大数据
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
90 0
|
3月前
|
SQL 分布式计算 大数据
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
55 0
|
3月前
|
缓存 分布式计算 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
69 0
|
3月前
|
分布式计算 算法 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
66 0
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
156 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
78 0