Spring事务用法示例与实现原理

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介:

关于事务,简单来说,就是为了保证数据完整性而存在的一种工具,其主要有四大特性:原子性,一致性,隔离性和持久性。对于Spring事务,其最终还是在数据库层面实现的,而Spring只是以一种比较优雅的方式对其进行封装支持。本文首先会通过一个简单的示例来讲解Spring事务是如何使用的,然后会讲解Spring是如何解析xml中的标签,并对事务进行支持的。

1. 使用示例

       关于事务最简单的示例,就是其一致性,比如在整个事务执行过程中,如果任何一个位置报错了,那么都会导致事务回滚,回滚之后数据的状态将和事务执行之前完全一致。这里我们以用户数据为例,在插入用户数据的时候,如果程序报错了,那么插入的动作就会回滚。如下是用户的实体:

public class User {
  private long id;
  private String name;
  private int age;
  
  // getter, setter...
}

       如下是模拟插入用户数据的业务代码:

public interface UserService {
  void insert(User user);
}

@Service
@Transactional
public class UserServiceImpl implements UserService {
  @Autowired
  private JdbcTemplate jdbcTemplate;

  @Override
  public void insert(User user) {
    jdbcTemplate.update("insert into user (name, age) value (?, ?)", 
        user.getName(), user.getAge());
  }
}

       在进行事务支持时,Spring只需要使用者在需要事务支持的bean上使用@Transactional注解即可,如果需要修改事务的隔离级别和传播特性的属性,则使用该注解中的属性进行指定。这里默认的隔离级别与各个数据库一致,比如MySQL是Repeatable Read,而传播特性默认则为Propagation.REQUIRED,即只需要当前操作具有事务即可。如下是xml文件的配置:

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
    <property name="url" value="jdbc:mysql://localhost/test?useUnicode=true"/>
    <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
    <property name="username" value="****"/>
    <property name="password" value="******"/>
</bean>

<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">
    <property name="dataSource" ref="dataSource"/>
</bean>

<bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
    <property name="dataSource" ref="dataSource"/>
</bean>

<context:component-scan base-package="com.transaction"/>
<tx:annotation-driven/>

       上述数据库配置用户按照各自的设置进行配置即可。可以看到,这里对于数据库的配置,主要包括四个方面:

  • DataSource配置:设置当前应用所需要连接的数据库,包括链接,用户名,密码等;
  • JdbcTemplate声明:封装了客户端调用数据库的方式,用户可以使用其他的方式,比如JpaRepository,Mybatis等等;
  • TransactionManager配置:指定了事务的管理方式,这里使用的是DataSourceTransactionManager,对于不同的链接方式,也可以进行不同的配置,比如对于JpaRepository使用JpaTransactionManager,对于Hibernate,使用HibernateTransactionManager;
  • tx:annotation-driven:主要用于事务驱动,其会通过AOP的方式声明一个为事务支持的Advisor,通过该Advisor和事务的相关配置进行事务相关操作。

       按照上述配置,我们的事务功能即配置完成,如下是我们的驱动类程序:

public class TransactionApp {
  @Test
  public void testTransaction() {
    ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
    UserService userService = ac.getBean(UserService.class);
    User user = getUser();
    userService.insert(user);
  }

  private User getUser() {
    User user = new User();
    user.setName("Mary");
    user.setAge(27);
    return user;
  }
}

       运行上述程序之后,可以看到数据库中成功新增了一条数据。这里如果我们将业务代码的插入语句之后手动抛出一个异常,那么,理论上插入语句是会回滚的。如下是修改后的service代码:

@Service
@Transactional
public class UserServiceImpl implements UserService {
  @Autowired
  private JdbcTemplate jdbcTemplate;

  @Override
  public void insert(User user) {
    jdbcTemplate.update("insert into user (name, age) value (?, ?)", 
        user.getName(), user.getAge());
    throw new RuntimeException();
  }
}

       这里我们手动抛出了一个RuntimeException,再次运行上述程序之后我们发现数据库中是没有新增的数据的,这说明我们的事务在程序出错后是能够保证数据一致性的。

2. 标签解析

       关于事务的实现原理,我们首先讲解Spring是如何解析标签,并且封装相关bean的,后面我们会深入讲解Spring是如何封装数据库事务的。

       根据上面的示例,我们发现,其主要有三个部分:DataSource,TransactionManager和tx:annotation-driven标签。这里前面两个部分主要是声明了两个bean,分别用于数据库连接的管理和事务的管理,而tx:annotation-driven才是Spring事务的驱动。根据本人前面对Spring自定义标签的讲解(Spring自定义标签解析与实现),可以知道,这里tx:annotation-driven是一个自定义标签,我们根据其命名空间(www.springframework.org/schema/tx)在全局范围内搜索,可以找到其处理器指定文件spring.handlers,该文件内容如下:

http\://www.springframework.org/schema/tx=org.springframework.transaction.config.TxNamespaceHandler

       这里也就是说tx:annotation-driven标签的解析在TxNamespaceHandler中,我们继续打开该文件可以看到起init()方法如下:

@Override
public void init() {
    registerBeanDefinitionParser("advice", new TxAdviceBeanDefinitionParser());
    registerBeanDefinitionParser("annotation-driven", 
        new AnnotationDrivenBeanDefinitionParser());
    registerBeanDefinitionParser("jta-transaction-manager", 
        new JtaTransactionManagerBeanDefinitionParser());
}

       可以看到,这里的annotation-driven是在AnnotationDrivenBeanDefinitionParser中进行处理的,其parse()方法就是解析标签,并且注册相关bean的方法,如下是该方法的实现:

public BeanDefinition parse(Element element, ParserContext parserContext) {
    // 注册事务相关的监听器,如果某个方法标注了TransactionalEventListener注解,
    // 那么该方法就是一个事务事件触发方法,即发生某种事务事件后,将会根据该注解的设置,回调指定
    // 类型的方法。常见的事务事件有:事务执行前和事务完成(包括报错后的完成)后的事件。
    registerTransactionalEventListenerFactory(parserContext);
    String mode = element.getAttribute("mode");
    // 获取当前事务驱动程序的模式,如果使用了aspectj模式,则会注册一个AnnotationTransactionAspect
    // 类型的bean,用户可以以aspectj的方式使用该bean对事务进行更多的配置
    if ("aspectj".equals(mode)) {
        registerTransactionAspect(element, parserContext);
    } else {
        // 一般使用的是当前这种方式,这种方式将会在Spring中注册三个bean,分别是
        // AnnotationTransactionAttributeSource,TransactionInterceptor
        // 和BeanFactoryTransactionAttributeSourceAdvisor,并通过Aop的方式实现事务
        AopAutoProxyConfigurer.configureAutoProxyCreator(element, parserContext);
    }
    return null;
}

       可以看到,对于事务的驱动,这里主要做了两件事:①注册事务相关的事件触发器,这些触发器由用户自行提供,在事务进行提交或事务完成时会触发相应的方法;②判断当前事务驱动的模式,有默认模式和aspectj模式,对于aspectj模式,Spring会注册一个AnnotationTransactionAspect类型的bean,用于用户使用更亲近于aspectj的方式进行事务处理;对于默认模式,这里主要是声明了三个bean,最终通过Aop的方式进行事务切入。下面我们看一下Spring是如何注册这三个bean的,如下是AopAutoProxyConfigurer.configureAutoProxyCreator的源码:

public static void configureAutoProxyCreator(Element element, 
        ParserContext parserContext) {
    // 这个方法主要是在当前BeanFactory中注册InfrastructureAdvisorAutoProxyCreator这个
    // bean,这个bean继承了AbstractAdvisorAutoProxyCreator,也就是其实现原理与我们前面
    // 讲解的Spring Aop的实现原理几乎一致
    AopNamespaceUtils.registerAutoProxyCreatorIfNecessary(parserContext, element);

    // 这里的txAdvisorBeanName就是我们最终要注册的bean,其类型就是下面注册的
    // BeanFactoryTransactionAttributeSourceAdvisor,可以看到,其本质是一个
    // Advisor类型的对象,因而Spring Aop会将其作为一个切面织入到指定的bean中
    String txAdvisorBeanName = TransactionManagementConfigUtils
        .TRANSACTION_ADVISOR_BEAN_NAME;
    // 如果当前BeanFactory中已经存在了目标bean,则不进行注册
    if (!parserContext.getRegistry().containsBeanDefinition(txAdvisorBeanName)) {
        Object eleSource = parserContext.extractSource(element);
        // 注册AnnotationTransactionAttributeSource,这个bean的主要作用是封装
        // @Transactional注解中声明的各个属性
        RootBeanDefinition sourceDef = new RootBeanDefinition(
       "org.springframework.transaction.annotation.AnnotationTransactionAttributeSource");
        sourceDef.setSource(eleSource);
        sourceDef.setRole(BeanDefinition.ROLE_INFRASTRUCTURE);
        String sourceName = parserContext.getReaderContext()
            .registerWithGeneratedName(sourceDef);

        // 注册TransactionInterceptor类型的bean,并且将上面的封装属性的bean设置为其一个属性。
        // 这个bean本质上是一个Advice(可查看其继承结构),Spring Aop使用Advisor封装实现切面
        // 逻辑织入所需的所有属性,但真正的切面逻辑却是保存在其Advice属性中的,也就是说这里的
        // TransactionInterceptor才是真正封装了事务切面逻辑的bean
        RootBeanDefinition interceptorDef = 
            new RootBeanDefinition(TransactionInterceptor.class);
        interceptorDef.setSource(eleSource);
        interceptorDef.setRole(BeanDefinition.ROLE_INFRASTRUCTURE);
        registerTransactionManager(element, interceptorDef);
        interceptorDef.getPropertyValues().add("transactionAttributeSource", 
            new RuntimeBeanReference(sourceName));
        String interceptorName = parserContext.getReaderContext()
            .registerWithGeneratedName(interceptorDef);

        // 注册BeanFactoryTransactionAttributeSourceAdvisor类型的bean,这个bean实现了
        // Advisor接口,实际上就是封装了当前需要织入的切面的所有所需的属性
        RootBeanDefinition advisorDef = 
            new RootBeanDefinition(BeanFactoryTransactionAttributeSourceAdvisor.class);
        advisorDef.setSource(eleSource);
        advisorDef.setRole(BeanDefinition.ROLE_INFRASTRUCTURE);
        advisorDef.getPropertyValues().add("transactionAttributeSource", 
            new RuntimeBeanReference(sourceName));
        advisorDef.getPropertyValues().add("adviceBeanName", interceptorName);
        if (element.hasAttribute("order")) {
            advisorDef.getPropertyValues().add("order", element.getAttribute("order"));
        }
        parserContext.getRegistry().registerBeanDefinition(txAdvisorBeanName, advisorDef);

        // 将需要注册的bean封装到CompositeComponentDefinition中,并且进行注册
        CompositeComponentDefinition compositeDef = 
            new CompositeComponentDefinition(element.getTagName(), eleSource);
        compositeDef.addNestedComponent(
            new BeanComponentDefinition(sourceDef, sourceName));
        compositeDef.addNestedComponent(
            new BeanComponentDefinition(interceptorDef, interceptorName));
        compositeDef.addNestedComponent(
            new BeanComponentDefinition(advisorDef, txAdvisorBeanName));
        parserContext.registerComponent(compositeDef);
    }
}

       如此,Spring事务相关的标签即解析完成,这里主要是声明了一个BeanFactoryTransactionAttributeSourceAdvisor类型的bean到BeanFactory中,其实际为Advisor类型,这也是Spring事务能够通过Aop实现事务的根本原因。

3. 实现原理

       关于Spring事务的实现原理,这里需要抓住的就是,其是使用Aop实现的,我们知道,Aop在进行解析的时候,最终会生成一个Adivsor对象,这个Advisor对象中封装了切面织入所需要的所有信息,其中就包括最重要的两个部分就是Pointcut和Adivce属性。这里Pointcut用于判断目标bean是否需要织入当前切面逻辑;Advice则封装了需要织入的切面逻辑。如下是这三个部分的简要关系图:

Advisor

       同样的,对于Spring事务,其既然是使用Spring Aop实现的,那么也同样会有这三个成员。我们这里我们只看到了注册的Advisor和Advice(即BeanFactoryTransactionAttributeSourceAdvisor和TransactionInterceptor),那么Pointcut在哪里呢?这里我们查看BeanFactoryTransactionAttributeSourceAdvisor的源码可以发现,其内部声明了一个TransactionAttributeSourcePointcut类型的属性,并且直接在内部进行了实现,这就是我们需要找的Pointcut。这里这三个对象对应的关系如下:

Transaction

       这样,用于实现Spring事务的Advisor,Pointcut以及Advice都已经找到了。关于这三个类的具体作用,我们这里进行整体的上的讲解,后面我们将会深入其内部讲解其是如何进行bean的过滤以及事务逻辑的织入的。

  • BeanFactoryTransactionAttributeSourceAdvisor:封装了实现事务所需的所有属性,包括Pointcut,Advice,TransactionManager以及一些其他的在Transactional注解中声明的属性;
  • TransactionAttributeSourcePointcut:用于判断哪些bean需要织入当前的事务逻辑。这里可想而知,其判断的基本逻辑就是判断其方法或类声明上有没有使用@Transactional注解,如果使用了就是需要织入事务逻辑的bean;
  • TransactionInterceptor:这个bean本质上是一个Advice,其封装了当前需要织入目标bean的切面逻辑,也就是Spring事务是如果借助于数据库事务来实现对目标方法的环绕的。

4. 小结

       本文首先通过一个简单的例子讲解了Spring事务是如何使用的,然后讲解了Spring事务进行标签解析的时候做了哪些工作,最后讲解了Spring事务是如何与Spring Aop进行一一对应的,并且是如何通过Spring Aop实现将事务逻辑织入目标bean的。

本文来自云栖社区合作伙伴“开源中国”

本文作者:王练

原文链接

相关文章
|
13天前
|
XML Java 开发者
Spring Boot开箱即用可插拔实现过程演练与原理剖析
【11月更文挑战第20天】Spring Boot是一个基于Spring框架的项目,其设计目的是简化Spring应用的初始搭建以及开发过程。Spring Boot通过提供约定优于配置的理念,减少了大量的XML配置和手动设置,使得开发者能够更专注于业务逻辑的实现。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,为开发者提供一个全面的理解。
25 0
|
22天前
|
Java 开发者 Spring
Spring高手之路24——事务类型及传播行为实战指南
本篇文章深入探讨了Spring中的事务管理,特别是事务传播行为(如REQUIRES_NEW和NESTED)的应用与区别。通过详实的示例和优化的时序图,全面解析如何在实际项目中使用这些高级事务控制技巧,以提升开发者的Spring事务管理能力。
36 1
Spring高手之路24——事务类型及传播行为实战指南
|
15天前
|
XML Java 数据库连接
Spring中的事务是如何实现的
Spring中的事务管理机制通过一系列强大的功能和灵活的配置选项,为开发者提供了高效且可靠的事务处理手段。无论是通过注解还是AOP配置,Spring都能轻松实现复杂的事务管理需求。掌握这些工具和最佳实践,能
24 3
|
2月前
|
Java Spring 容器
Spring底层原理大致脉络
Spring底层原理大致脉络
|
2月前
|
Java 关系型数据库 MySQL
Spring事务失效,我总结了这7个主要原因
本文详细探讨了Spring事务在日常开发中常见的七个失效原因,包括数据库不支持事务、类不受Spring管理、事务方法非public、异常被捕获、`rollbackFor`属性配置错误、方法内部调用事务方法及事务传播属性使用不当。通过具体示例和源码分析,帮助开发者更好地理解和应用Spring事务机制,避免线上事故。适合所有使用Spring进行业务开发的工程师参考。
32 2
|
2月前
|
设计模式 Java Spring
Spring Boot监听器的底层实现原理
Spring Boot监听器的底层实现原理主要基于观察者模式(也称为发布-订阅模式),这是设计模式中用于实现对象之间一对多依赖的一种常见方式。在Spring Boot中,监听器的实现依赖于Spring框架提供的事件监听机制。
30 1
|
2月前
|
Java 程序员 Spring
Spring事务的1道面试题
每次聊起Spring事务,好像很熟悉,又好像很陌生。本篇通过一道面试题和一些实践,来拆解几个Spring事务的常见坑点。
Spring事务的1道面试题
|
2月前
|
XML 前端开发 Java
拼多多1面:聊聊Spring MVC的工作原理!
本文详细剖析了Spring MVC的工作原理,涵盖其架构、工作流程及核心组件。Spring MVC采用MVC设计模式,通过DispatcherServlet、HandlerMapping、Controller和ViewResolver等组件高效处理Web请求。文章还探讨了DispatcherServlet的初始化和请求处理流程,以及HandlerMapping和Controller的角色。通过理解这些核心概念,开发者能更好地构建可维护、可扩展的Web应用。适合面试准备和技术深挖
43 0
|
2月前
|
负载均衡 Java API
Spring Cloud原理详解
Spring Cloud原理详解
73 0
|
2月前
|
负载均衡 Java 网络架构
Spring Cloud原理详解
介绍了Spring Cloud的原理和核心组件,包括服务注册与发现、配置管理、负载均衡、断路器、智能路由、分布式消息传递、分布式追踪和服务熔断等,旨在帮助开发人员快速构建和管理微服务架构中的分布式系统。
58 0