阿里云Elasticsearch智能运维系统最佳实践

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 随着业务的增长与发展,不同的Elasticsearch集群承担着多厚多样的功能需求。尤其是当集群规模增长、业务庞大时,需要耗费大量的精力运维集群。阿里云Elasticsearch研发了一套智能运维系统,可通多专家经验与数据驱动两个重要抓手帮助用户运维集群、提升业务的稳定性。

摘要:

随着业务的增长与发展,不同的Elasticsearch集群承担着多厚多样的功能需求。尤其是当集群规模增长、业务庞大时,需要耗费大量的精力运维集群。阿里云Elasticsearch研发了一套智能运维系统,可通多专家经验与数据驱动两个重要抓手帮助用户运维集群、提升业务的稳定性。本篇文章将结合运维常见问题展开阿里云Elasticsearch智能运维系统最佳实践的介绍。

一、诊断集群异常

最坏的情况,Elasticsearch集群(后简称ES集群)崩溃,无法正常承担各项业务。导致ES集群崩溃的大多数原因是master节点、数据节点的宕机,而出现这些情况绝不是“空穴来风”,智能运维系统要帮助用户做的便是“有迹可寻”,从而“有则改之,无则加勉”。
 

Case 1:节点负载过高,导致节点失联

以ES集群的数据节点与master节点为例,当有任何一个节点负载过高,都可能导致单节点宕机从而挑战集群的可用性。而通过系统自动与用户手动触发的方式,智能运维系统可帮助用户监测过去一段时间内节点负载情况,若存在危险,则提示用户原因与解决方案,帮助用户提前获知、拯救集群于崩溃边缘。
 master_

Case 2 : 索引副本丢失,数据可靠性受损

索引的副本一方面是保证数据的可靠性,保证在数据丢失的状态下依旧可以恢复如初,一方面副本数的增加可提高查询的性能。在存储空间占用过满时,极有可能导致索引副本丢失,检查副本的存在状态,可帮助用户提高数据的可靠性。在集群重启的过程中,只有在副本数量完整时才能保证服务的持续进行。
_

Case 3:数据写入失败,集群压力过大

在写操作进行的过程中,可能因集群压力,堆积过多的读写任务,而对于用户来说可能会产生所有写入均返回失败的误区。如果在此情况下继续增加写入,则可能会引起集群的崩溃。通过推荐用户调用线程池查看实际成功、失败任务情况,使用分批写入的方式解决写入堆积困境,给集群减压。
bulkreject

二、提升集群性能

如何在固定配置的情况下更大程度发挥集群可用性能,是用户最关心的问题。从Elasticsearch内部逻辑与架构,数据节点是任务载体与执行依托,shard是索引与搜索的主要承担者,副本是提升性能的重要抓手,分批写入与防止稀疏是必备方式。如何提升集群性能,智能运维系统从数据节点负载、shard合理性以及用户操作规范三个面入手,帮助用户挖掘集群能力。
 

Case 1:数据节点抓偏离,防止单节点瓶颈

在各数据节点负载均衡的条件下,性能会趋向于最优的实践。如果发生单节点负载过高,与其他节点产生较大差异,则高负载节点可能成为“拖油瓶”,拉低整体集群数据节点任务执行,甚至存在脱离集群的风险。通过检测数据节点间的负载偏离情况,能引导用户均衡负载,提升性能的同时保障稳定性。
_

 

Case 2:shard、segment合理性评估,升性能调负载

不同的ES集群应用场景对性能承载着不同的需求。索引的载体就是shard,搜索结果的返回也是多个shard共同的返回结果。Shard数与节点间的负载均衡、查询性能和存储空间利用均有着非常重要的关系。智能运维可读取用户索引shard、节点shard,并检测是否因索引segment过多导致碎片化,引发离线数据写入过慢,从而提示用户在适当的时间执行段合并操作,从而提升离线数据的写入速度。帮助推荐用户最佳的shard指定情况、在合适的时机执行段合并,从而均衡负载、提升性能、节省空间。
_shard_
_segment_

 

Case 3:规范操作方式,保证状态合理

在保证index:type=1:1的状态时,能有效防止稀疏数据的产生,从type个数诊断科可帮助用户合理化设置,辅以禁用dynamic映射自定义映射类型、别名的日常使用以及使用分批(bulk)合理操作的基本方式,帮助用户规范化、便捷化操作,加之集群状态频繁变更的监测,可提示用户减少读写,避免对集群造成更大的压力,引发更大的风险。
_
_

 

总结:

综上,是智能运维系统在诊断集群异常与提升集群性能作出的检测、析因、建议的主要实践。辅之以集群状态走势的监测图,从各个状态诊断项的个数变化,向用户展示最近时间段内的集群整体情况,从而全局查看,并增强知识提取、常见问题归纳的统计。

 
不同的ES集群在使用智能运维系统时会有不同的诊断结果,在ES集群变更的过程中,智能运维系统可持续跟进,给出用户ES集群各个状态的异常探测、风险规避与调优推荐,从而帮助用户合理化、科学化、便捷化运维集群。
更多信息欢迎访问:link

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
4天前
|
运维 Kubernetes Cloud Native
构建高效云原生运维体系:Kubernetes最佳实践
【5月更文挑战第9天】 在动态和快速演变的云计算环境中,高效的运维是确保应用稳定性与性能的关键。本文将深入探讨在Kubernetes环境下,如何通过一系列最佳实践来构建一个高效且响应灵敏的云原生运维体系。文章不仅涵盖了容器化技术的选择与优化、自动化部署、持续集成/持续交付(CI/CD)流程的整合,还讨论了监控、日志管理以及灾难恢复策略的重要性。这些实践旨在帮助运维团队有效应对微服务架构下的复杂性,确保系统可靠性及业务的连续性。
|
4天前
|
存储 监控 Java
视频 | Elasticsearch 8.X 企业内训之最佳实践10 讲
视频 | Elasticsearch 8.X 企业内训之最佳实践10 讲
20 0
|
1天前
|
人工智能 云计算
阿里云携手合作伙伴得云AI举办《AI赋能 · 智能革新沙龙》
阿里云与得云AI联合举办了《AI赋能·智能革新沙龙》,探讨云计算和AI前沿技术。
|
4天前
|
搜索推荐 Java 数据库
springboot集成ElasticSearch的具体操作(系统全文检索)
springboot集成ElasticSearch的具体操作(系统全文检索)
|
4天前
|
API 数据安全/隐私保护 开发者
用 Python 优雅地玩转 Elasticsearch:实用技巧与最佳实践
用 Python 优雅地玩转 Elasticsearch:实用技巧与最佳实践
24 6
|
4天前
|
自然语言处理 搜索推荐 数据可视化
重磅 | Elasticsearch 智能知识问答上线了
重磅 | Elasticsearch 智能知识问答上线了
27 0
|
4天前
|
存储 数据可视化 数据建模
阿里云大佬叮嘱我务必要科普这个 Elasticsearch API
阿里云大佬叮嘱我务必要科普这个 Elasticsearch API
15 0
|
4天前
|
人工智能 自然语言处理 供应链
阿里云联合伙伴发起“物流智能联盟”
物流行业内首个专注于大模型应用研究与实践的联盟“物流智能联盟”在杭州成立,旨在加速大模型在物流领域落地,用AI助力物流行业增效降本和业务创新。该联盟由阿里云、菜鸟、高德地图、中远海运、东航物流、圆通速递、申通快递、中通快递、德邦快递、G7易流、地上铁、浙江大学智能交通研究所等在2024数智物流峰会上共同成立。
|
4天前
|
运维 Prometheus 监控
构建高效稳定的云基础设施:运维最佳实践
【4月更文挑战第20天】 在动态的云计算环境中,确保服务的高效性与稳定性是现代IT运维团队面临的主要挑战。本文深入探讨了一系列运维最佳实践,旨在帮助读者构建和维护一个健壮的云基础设施。从自动化部署、监控策略到灾难恢复计划,文章将详细阐述如何通过这些实践来优化资源使用效率,降低系统故障风险,并提高整体服务质量。
22 0
|
4天前
|
存储 人工智能 自然语言处理
基于阿里云向量检索 Milvus 版与 PAI 搭建高效的检索增强生成(RAG)系统
阿里云向量检索 Milvus 版现已无缝集成于阿里云 PAI 平台,一站式赋能用户构建高性能的检索增强生成(RAG)系统。您可以利用 Milvus 作为向量数据的实时存储与检索核心,高效结合 PAI 和 LangChain 技术栈,实现从理论到实践的快速转化,搭建起功能强大的 RAG 解决方案。
基于阿里云向量检索 Milvus 版与 PAI 搭建高效的检索增强生成(RAG)系统

相关产品

  • 检索分析服务 Elasticsearch版