等等!这两个mysql慢查询的坑我已经替你们踩了

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 对生产环境中遇到的2个慢查询案例进行了详细的分析和调优。

慢sql一

问题发现

将应用发布到生产环境后,前端页面请求后台API返回数据,发现至少需要6s。查看到慢sql:
1

复现慢sql
执行sql:

select count(*) from sync_block_data
where unix_timestamp(sync_dt) >= 1539101010
AND unix_timestamp(sync_dt) <= 1539705810

查看耗时:

2

一共耗时为2658ms

查看执行计划:

explain select count(*) from sync_block_data
where unix_timestamp(sync_dt) >= 1539101010
AND unix_timestamp(sync_dt) <= 1539705810

执行计划结果:
3

优化慢sql一

sync_dt的类型为datetime类型。换另外一种sql写法,直接通过比较日期而不是通过时间戳进行比较。将sql中的时间戳转化为日期,分别为2018-10-10 00:03:30和2018-10-17 00:03:30
执行sql:

select count(*) from sync_block_data
where sync_dt >= "2018-10-10 00:03:30"
AND sync_dt <= "2018-10-17 00:03:30"

查看耗时:

4

一共耗时419毫秒,和慢查询相比速度提升六倍多

查看执行计划:

explain select count(*) from sync_block_data
where sync_dt >= "2018-10-10 00:03:30"
AND sync_dt <= "2018-10-17 00:03:30"

执行计划结果:
5

访问页面,优化完成后请求时间平均为900毫秒

6

执行计划中慢查询和快查询唯一的区别就是type不一样:慢查询中type为index,快查询中type为range。

优化慢sql二

这条sql的业务逻辑为统计出最近七天该表的数据量,可以去掉右边的小于等于
执行sql:

select count(*) from sync_block_data
where sync_dt >= "2018-10-10 00:03:30"

查看耗时:
7

一共耗时275毫秒,又将查询时间减少了一半

查看执行计划:

explain select count(*) from sync_block_data
where sync_dt >= "2018-10-10 00:03:30"

执行计划结果:

8

type仍是range。但是通过少比较一次将查询速度提高一倍

优化慢sql三

新建一个bigint类型字段sync_dt_long存储sync_dt的毫秒值,并在sync_dt_long字段上建立索引
测试环境下:
优化慢查询二sql

select count(*) from copy_sync_block_data
where sync_dt >="2018-10-10 13:15:02"

耗时为34毫秒

优化慢查询三sql
SQL
select count(*) from copy_sync_block_data
where sync_dt_long >= 1539148502916
耗时为22毫秒
测试环境中速度提升10毫秒左右

优化慢查询三sql测试小结:在InnoDB存储引擎下,比较bigint的效率高于datetime
完成三步优化以后生产环境中请求耗时:
9

速度又快了200毫秒左右。通过给查询的数据加10s缓存,响应速度最快平均为20s

explain使用介绍

通过explain,可以查看sql语句的执行情况(比如查询的表,使用的索引以及mysql在表中找到所需行的方式等)
用explain查询mysql查询计划的输出参数有:

列名 说明
id 执行编号,标识select所属的行。如果在语句中没子查询或关联查询,只有唯一的select,每行都将显示1。否则,内层的select语句一般会顺序编号,对应于其在原始语句中的位置
select_type 显示本行是简单或复杂select。如果查询有任何复杂的子查询,则最外层标记为PRIMARY(DERIVED、UNION、UNION RESUlT)
table 访问引用哪个表(引用某个查询,如“derived3”)
type 数据访问/读取操作类型(ALL、index、range、ref、eq_ref、const/system、NULL)
possible_keys 揭示哪一些索引可能有利于高效的查找
key 显示mysql决定采用哪个索引来优化查询
key_len 显示mysql在索引里使用的字节数
ref 显示了之前的表在key列记录的索引中查找值所用的列或常量
rows 为了找到所需的行而需要读取的行数,估算值,不精确。通过把所有rows列值相乘,可粗略估算整个查询会检查的行数
Extra 额外信息,如using index、filesort等

重点关注type,type类型的不同竟然导致性能差六倍!!!

type显示的是访问类型,是较为重要的一个指标,结果值从好到坏依次是:
system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL ,一般来说,得保证查询至少达到range级别,最好能达到ref。

类型 说明
All 最坏的情况,全表扫描
index 和全表扫描一样。只是扫描表的时候按照索引次序进行而不是行。主要优点就是避免了排序, 但是开销仍然非常大。如在Extra列看到Using index,说明正在使用覆盖索引,只扫描索引的数据,它比按索引次序全表扫描的开销要小很多
range 范围扫描,一个有限制的索引扫描。key 列显示使用了哪个索引。当使用=、 <>、>、>=、<、<=、IS NULL、<=>、BETWEEN 或者 IN 操作符,用常量比较关键字列时,可以使用 range
ref 一种索引访问,它返回所有匹配某个单个值的行。此类索引访问只有当使用非唯一性索引或唯一性索引非唯一性前缀时才会发生。这个类型跟eq_ref不同的是,它用在关联操作只使用了索引的最左前缀,或者索引不是UNIQUE和PRIMARY KEY。ref可以用于使用=或<=>操作符的带索引的列。
eq_ref 最多只返回一条符合条件的记录。使用唯一性索引或主键查找时会发生 (高效)
const 当确定最多只会有一行匹配的时候,MySQL优化器会在查询前读取它而且只读取一次,因此非常快。当主键放入where子句时,mysql把这个查询转为一个常量(高效)
system 这是const连接类型的一种特例,表仅有一行满足条件。
Null 意味说mysql能在优化阶段分解查询语句,在执行阶段甚至用不到访问表或索引(高效)

出现慢查询的原因

在where子句中使用了函数操作
出现慢查询的sql语句中使用了unix_timestamp函数统计出自'1970-01-01 00:00:00'的到当前时间的秒数差。导致索引全扫描统计出近七天的数据量的

解决方案

尽量避免在where子句中对字段进行函数操作,这将导致存储引擎放弃使用索引而进行全表扫描。
1)对于需要计算的值最好通过程序计算好传入而不是在sql语句中做计算,比如这个sql中我们将当前的日期和七天前的日期计算好传入
2)对于时间类型,类型最好为bigint

后记

这个问题当时在测试环境没有发现,测试环境的请求速度还是可以的。没有被发现可以归结为数据量。生产数据量为1042257,测试环境数据量为20320,数据量差50倍,数据量的增大把慢查询的问题也放大了。

慢sql二

因为线上出现了很明显的请求响应慢的问题,又去看了项目中的其他sql,发现还有sql执行的效率比较低

复现慢sql
执行sql

select FROM_UNIXTIME(copyright_apply_time/1000,'%Y-%m-%d') point,count(1) nums
from resource_info where copyright_apply_time >= 1539336488355 and copyright_apply_time <= 1539941288355 group by point

查看耗时:
10
耗时为1123毫秒

查看执行计划:

explain select FROM_UNIXTIME(copyright_apply_time/1000,'%Y-%m-%d') point,count(1) nums
from resource_info where copyright_apply_time >= 1539336488355 and copyright_apply_time <= 1539941288355 group by point

执行计划结果:
11

索引是命中了,但是extra字段中出现了Using temporary和Using filesort
优化慢sql一
group by实质是先排序后分组,也就是分组之前必排序。通过分组的时候禁止排序优化sql
执行sql:

select FROM_UNIXTIME(copyright_apply_time/1000,'%Y-%m-%d') point,count(1) nums
from resource_info where copyright_apply_time >= 1539336488355 and copyright_apply_time <= 1539941288355 group by point order by null

查看耗时:
12

一共耗时1068毫秒,提高100毫秒左右,效果并不是特别明显

查看执行计划:

13

extra字段已经没有Using filesort了,filesort表示通过对返回数据进行排序。所有不是通过索引直接返回排序结果的排序都是FileSort排序,说明优化后通过索引直接返回排序结果
Using temporary依然存在,出现Using temporary表示查询有使用临时表, 一般出现于排序, 分组和多表join的情况, 查询效率不高, 仍需要进行优化,这里出现临时表的原因是数据量过大使用了临时表进行分组运算

优化慢sql二

慢查询的sql业务逻辑为根据时间段分类统计出条件范围内各个时间段的数量
比如给定的条件范围为2018-10-20~2018-10-27的时间戳,这条sql就会统计出2018-10-20~2018-10-27每天的数据增量。现在优化成一天一天查,分别查七次数据,去掉分组操作
执行sql:

select FROM_UNIXTIME(copyright_apply_time/1000,'%Y-%m-%d') point,count(1) nums
from resource_info where copyright_apply_time >= 1539855067355 and copyright_apply_time <= 1539941467355

查看耗时:

14

耗时为38毫秒,即使查7次所用时间也比1123毫秒少

查看执行计划:

15

extra字段中和慢查询的extra相比少了Using temporary和Using filesort。完美

就这样第一次经历了真正的慢查询以及慢查询优化,终于理论和实践相结合了。

本文作者:新华智云 服务端 研发工程师 何甜甜

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
4月前
|
缓存 关系型数据库 MySQL
MySQL慢查询优化策略
MySQL慢查询优化是一个复杂的过程,需要根据具体的应用场景和数据特点进行。以上策略是提升数据库查询性能的有效途径,但最关键的是对系统进行持续的监控和分析,及时发现并解决性能瓶颈。通过实践这些策略,你可以显著提高MySQL数据库的性能,为用户提供更快的响应时间和更好的体验。
139 10
|
8月前
|
SQL 监控 关系型数据库
深入理解MySQL日志:通用查询、慢查询和错误日志详解
深入理解MySQL日志:通用查询、慢查询和错误日志详解
1616 0
|
2月前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
3天前
|
关系型数据库 MySQL 数据库
mysql慢查询每日汇报与分析
通过启用慢查询日志、提取和分析慢查询日志,可以有效识别和优化数据库中的性能瓶颈。结合适当的自动化工具和优化措施,可以显著提高MySQL数据库的性能和稳定性。希望本文的详解和示例能够为数据库管理人员提供有价值的参考,帮助实现高效的数据库管理。
31 11
|
1月前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
82 18
|
1月前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
84 7
|
1月前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
107 5
|
2月前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
2月前
|
SQL 关系型数据库 MySQL
【赵渝强老师】MySQL的慢查询日志
MySQL的慢查询日志用于记录执行时间超过设定阈值的SQL语句,帮助数据库管理员识别并优化性能问题。通过`mysqldumpslow`工具可查看日志。本文介绍了如何检查、启用及配置慢查询日志,并通过实例演示了慢查询的记录与分析过程。
263 3
|
3月前
|
缓存 关系型数据库 MySQL
MySQL慢查询优化
通过上述方法综合施策,可以显著提升MySQL数据库的查询性能,降低延迟,增强应用系统的整体响应能力。实践中,优化工作是一个持续迭代的过程,需要结合具体应用场景不断调整策略。
394 1