男生追女生的超强数学建模分析

简介:

问题分析

男生追女生,对男生来说最重要的是学习、爱情两不误。因此我们引进男生的学业成绩函数Y(t)。

首先,我们不考虑男生的追求攻势,则影响该函数的因素主要是两个人的关系程度。为了便于分析,我们将两人的关系简化为女生对该男生的疏远度,于是引入疏远度函数X(t)。

问题就转化为求解Y(t)和X(t)的相互作用关系。利用微分,很容易就可以求出两者的关系。但现实中男生可能会对该女生发起一轮轮的追求攻势,因此还要考虑到追求攻势对模型的影响。而追求攻势又与女生的疏远度有关,可以简化地将两者看成是正比关系。将追求攻势加入到模型中,就可以找出攻势与Y(t)和 X(t)的关系了。

模型假设

1、t时刻A君的学业成绩为Y(t);
2、t时刻B女对A君的疏远度为X(t);
3、当A君没开始追求B女时B女对A君的疏远度增长(平时发现的A君的不良行为)符合Malthus模型,即dX/dt=aX(t)其中a为正常数。
4、当Y(t)存在时,单位时间内减少X(t)的值与X(t)的值成正比,比例常数为b,从而 dX(t)/dt=aX(t)-bX(t)Y(t)。
5、A君发起对B女追求后,立即转化为B女对A君的好感,并设定转化系数为 α,而随着的A君发起对B女的追求,A君学业的自然下降率与学业成绩成正比,比例系数为e。于是有dY(t)/dt=αbX(t)Y(t)-eY(t)。

模型构成

由假设4和假设5,就得到了学业与疏远度在无外界干扰的情况下互相作用的模型:

{dX(t)/dt=aX-bXY;dY(t)/dt=cXY-eY} 其中c=αb. (1)

这是一个非线性自治系统,为了求两个数X与Y的变化规律,我们对它作定性分析。令{aX-bXY=0;cXY-eY=0} 解得系统(1)的两个平衡位置为:O(0,0),M (e/c,a/b)。从(1)的两方程中消去dt,分离变量可求得首次积分:

F(X,Y)=cX-dln|X|-aln|Y|=k (2)

容易求出函数F(X,Y)有唯一驻点为M(e/c,a/b)。再用极值的充分条件判断条件可以判断M是F的极小值点。同时易见,当X→∞(B女对A君恨之入骨)或Y→∞ (A君是一块只会学习的木头)时均有F→∞;而X→0(A君作了变形手术,B女对他毫无防备)或Y→0(A君不学无术,丝毫不学习)时也有F→∞。

由此不难看出,在第一象限内部连续的函数z=F(X,Y)的图形是以M为最小值点,且在第一卦限向上无限延伸的曲面,因而它与z=k(k>0)的交线在相平面 XOY的投影F(X,Y)=k (k>0)是环绕点M的闭曲线簇。这说明学业成绩和疏远度的指数成周期性变化。

结果解释

从生态意义上看这是容易理解的,当A君的学习成绩Y(t)下降时,B女会疏远 A君,疏远度X(t)上升;于是A君就又开始奋发图强,学习成绩Y(t)又上升了。于是B女就又和A君开始了来往,疏远度X(t)又下降了。与B女交往多了,当然分散了学习时间,A君的学习成绩Y(t)下降了。

然而我们可证明,尽管闭轨线不同,但在其周期内的X和Y的平均数量都分别是一常数,而且恰为平衡点M的两个坐标。事实上,由(1)的第二个方程可得: dY/Ydt=cX- e,两端在一个周期时间T内积分,得:

∫(dy/Ydt)dt=c∮Xdt-dT (3)

注意到当t经过一个周期T时,点(X,Y)绕闭轨线运行一圈又回到初始点,从而:∫(dY/Ydt)dt=∮dY/Y=0。所以,由(3)式可得: (∫Xdt)/T=e/c。

同理,由(1)的第一个方程可得:(∫Ydt)/T=a/b。

模型优化

考虑到追求攻势对上述模型的影响。设追求攻势与该时刻的疏远度成正比,比例系数为h,h反映了追求攻势的作用力。在这种情况下,上述学业与疏远度的模型应变为:

{dX/dT=aX-bXY-hX=(a-h)X-bXY;dY/dt=cXY-eY-hY=cXY-(e+h)Y} (4)

将(4)式与(1)式比较,可见两者形式完全相同,前者仅是把(1)中X与Y的系数分别换成了a-h与e+h。因此,对(4)式有

x’=(∫Xdt)/T=(e+h)/c,y’=(∫Ydt)/t=(a-h)/b (5)

利用(5)式我们可见:攻势作用力h的增大使X’增加,Y’减少。

我们的建议

考试期间,由于功课繁忙,使得追求攻势减少,即h减小,与平时相比,将有利于学业成绩Y的增长。这就是Volterra原理。 此原理对男生有着重要的指导意义:强大的爱情攻势有时不一定能达到满意的效果,反而不利与学业的成长;有时通过慢慢接触,慢慢了解,再加上适当的追求行动,女生的疏远度就会慢慢降低。学习成绩也不会降低!

7a3465df5ce6802c96a87fccb5d738d21affc7f6


原文发布时间为:2018-10-22本文作者:数控小V本文来自云栖社区合作伙伴“ 数据与算法之美”,了解相关信息可以关注“ 数据与算法之美”。
相关文章
|
7月前
2023数学建模国赛B代码
2023数学建模国赛B代码
|
7月前
|
机器学习/深度学习 算法
【数学建模竞赛】评价类赛题常用算法解析
【数学建模竞赛】评价类赛题常用算法解析
137 0
|
机器学习/深度学习 传感器 安全
2023 年高教社杯全国大学生数学建模B 题 多波束测线问题思路及参考代码
2023 年高教社杯全国大学生数学建模B 题 多波束测线问题思路及参考代码
|
算法 数据挖掘 数据处理
【数学建模】国赛真题分析 2012 A题 葡萄酒的评价
【数学建模】国赛真题分析 2012 A题 葡萄酒的评价
300 0
|
4月前
|
人工智能 移动开发 算法
【2023华中杯数学建模】B 题 小学数学应用题相似性度量及难度评估详细建模方案及实现代码
本文提供了2023年华中杯数学建模B题的详细建模方案和实现代码,包括设计小学数学应用题相似性度量方法、建立题目难度评估数学模型、对题库进行相似性或难度分类,以及使用TF-IDF和K-Means聚类算法进行题目难度分析和相似题目推荐。
75 0
【2023华中杯数学建模】B 题 小学数学应用题相似性度量及难度评估详细建模方案及实现代码
|
4月前
【2024美国大学生数学建模竞赛】2024美赛E题 问题分析、数学模型、实现代码、完整论文
本文是关于2024美国大学生数学建模竞赛E题的预告,承诺在题目发布后提供问题分析、数学模型、实现代码和完整论文的逐步更新。
74 2
【2024美国大学生数学建模竞赛】2024美赛E题 问题分析、数学模型、实现代码、完整论文
|
4月前
|
安全
2024年江西省研究生数学建模竞赛C题: 聚变反应堆设计 问题分析、实现代码及参考论文
本文是关于2024年江西省研究生数学建模竞赛C题的解题分析,题目要求设计聚变反应堆,建立模型分析慢化区/增殖区中温度和中子通量的变化,确定反应堆尺寸以最小化单位电力输出的总成本,并计算相关物理量和分析等离子体的点火要求及稳态运行持续时间。
143 2
|
4月前
|
机器学习/深度学习 算法 机器人
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
本文介绍了2023年第十三届APMCM亚太地区大学生数学建模竞赛A题的Python代码实现,详细阐述了水果采摘机器人图像识别问题的分析与解决策略,包括图像特征提取、数学模型建立、目标检测算法使用,以及苹果数量统计、位置估计、成熟度评估和质量估计等任务的编程实践。
95 0
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
|
4月前
|
算法 量子技术 决策智能
【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 42页论文及代码
本文介绍了2023年第十三届MathorCup高校数学建模挑战赛A题的解决方案,深入探讨了量子计算机在信用评分卡组合优化中的应用,提供了详细的建模过程、QUBO模型构建方法以及相应的Python代码实现,并在42页的论文中详细阐述了研究成果。
72 0
【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 42页论文及代码
|
4月前
|
机器学习/深度学习 数据可视化 Python
【江西省研究生数学建模竞赛】第三题 植物的多样性 建模方案及参考文献
本文提供了江西省研究生数学建模竞赛第三题“植物的多样性”的建模方案、参考文献和可视化示例,探讨了如何通过数学模型研究植物数量变化规律并提出保持森林多样性的策略。
48 0
【江西省研究生数学建模竞赛】第三题 植物的多样性 建模方案及参考文献