AI学习笔记——强化学习之动态规划(Dynamic Programming)解决MDP(2)

简介: 求解最优MDP实际上就是找到最佳策略(Policy)π来最大化来最大化V函数(Value Function)。公式一1. 策略估算(Policy Evaluation)在MDP问题中,如何评估一个策略的好坏呢?那我们就计算这个策略的V函数(值函数),这里我们又要用到之前文章中提到的Bellman Equation了。

求解最优MDP实际上就是找到最佳策略(Policy)π来最大化来最大化V函数(Value Function)。

img_be1ffc0d5da778e9103097dd10b46d5c.png
公式一

1. 策略估算(Policy Evaluation)

在MDP问题中,如何评估一个策略的好坏呢?那我们就计算这个策略的V函数(值函数),这里我们又要用到之前文章中提到的Bellman Equation了。

img_8a3ed8c87cb4711216c31e1836f12773.png
公式二

这个等式可以通过下一个状态的值函数来求得当前状态的值函数。如果我们对上面这个Bellman Equation中的每一个状态不停地迭代,最终每个状态的V(值)函数都会收敛成一个固定的数值。公式如下
img_9a90a5ce2bb68c9b375ea25c03ee44bf.png
公式三

这个公式与公式二不同的是引入了k,k是指迭代的次数。Bellman等式左边表示k+1代s状态上的V函数,Bellman等式右边是k代中s下一个状态s'的的相关函数。第二个等式是Bellman等式的矩阵形式。我们使用这个公式将第k+1代的每一个状态s都更新之后,就完成了第k+1次迭代。

V函数真的会收敛到一个稳定的数值吗?我们不妨举一个例子。


img_d8058eb7adc734b5cd5fc49793d5ba52.png
图一

图中左上角和又下角是机器人的目标奖励为0,其他地方奖励为-1,策略是随机运动(上下左右移动的概率相等,为π=0.25)。价值函数的迭代过程如下:

img_ebb711e50dae0e5f93c21ae484063415.png
图二

可以看出在这个随机运动策略决策下,通过对Bellman 等式的不断迭代最终V函数会收敛到一个稳定的数值。

2. 策略迭代(Policy Iteration)

通过迭代Ballman函数的方式完成V函数的收敛,从而完成了对这个策略的评估。上面的例子即便收敛之后,就得到了随机运动的策略π的V函数。

接下来我们就要改进这个随机策略,改进的方法就是选择获取最大奖励的策略,而并不是跟之前一样随机运动。这种获取最大奖励的策略就叫做Greedy策略。

img_3442a20a018259b3003d6c8d97a34829.png
图三

所以策略迭代分为两步:

第一步:用迭代Bellman 等式的方法对策略进行评估,收敛V函数(公式三)
第二步:用Greedy的方法改进策略。

上面两个步骤不停循环,最终策略就会收敛到最优策略。

img_8aaa0c853914e7d11527db5eaac79c8e.png
图四

2. 值迭代(Value Iteration)

也许你已经发现了,如同上面的例子,如果想找到最佳策略,在用Bellman等式迭代的过程中,并不一定需要等到V函数完全收敛。或许可以设定一个迭代上限,比如k=3就停止迭代了。

那更加极端地,在迭代Bellman 等式的过程中,我们只迭代一次(k=1)就采取Greedy策略,而不必等到V函数收敛,这种特殊的策略迭代方法就叫做值迭代(Value Iteration)

img_a2a3be8b6d33548b488e5814883a20a0.png
公式四

值迭代简单粗暴,直接用Bellman等式更新V函数,每次更新的时候都用Greedy的策略,当V函数收敛的时候策略也就收敛了。这个时候得到的策略就是最佳策略。

3. 总结

策略迭代和值迭代是寻找最优策略的方法,策略迭代先评估策略用迭代Bellman等式的方式使V函数收敛,然后再用Greedy的策略对原策略进行改进,然后不断重复这两个步骤,直到策略收敛。

值迭代可以看成是策略迭代的一种特殊情况,只迭代Bellman函数一次便使用Greedy策略对V函数进行更新,然后重复这两个动作直到V函数收敛从而获得最佳策略。


相关文章
AI学习笔记——求解最优MDP
AI学习笔记——MDP(Markov Decision Processes马可夫决策过程)简介
AI学习笔记——Q Learning
AI学习笔记——Sarsa算法
AI学习笔记——卷积神经网络(CNN)


文章首发steemit.com 为了方便墙内阅读,搬运至此,欢迎留言或者访问我的Steemit主页

目录
相关文章
|
28天前
|
机器学习/深度学习 人工智能 运维
强化学习加持运维:AI 也能学会“打补丁”和“灭火”?
强化学习加持运维:AI 也能学会“打补丁”和“灭火”?
114 13
|
4月前
|
机器学习/深度学习 人工智能 UED
直击强化学习前沿,RL专场来袭丨AI Insight Talk直播预告
在知识爆炸、信息过载的时代,如何洞悉 AI 领域前沿趋势?OpenMMLab 联合 Hugging Face、ModelScope、知乎及机智流等重磅推出 AI Insight Talk
89 0
|
3月前
|
机器学习/深度学习 人工智能 算法
深度强化学习在异构环境中AI Agent行为泛化能力研究
随着人工智能技术的迅猛发展,AI Agent 在游戏、智能制造、自动驾驶等场景中已逐步展现出强大的自适应能力。特别是深度强化学习(Deep Reinforcement Learning, DRL)的引入,使得智能体能够通过与环境的交互,自动学习最优的行为策略。本文将系统性地探讨基于深度强化学习的AI Agent行为决策机制,并结合代码实战加以说明。
深度强化学习在异构环境中AI Agent行为泛化能力研究
|
3月前
|
机器学习/深度学习 人工智能 算法
AI-Compass 强化学习模块:理论到实战完整RL技术生态,涵盖10+主流框架、多智能体算法、游戏AI与金融量化应用
AI-Compass 强化学习模块:理论到实战完整RL技术生态,涵盖10+主流框架、多智能体算法、游戏AI与金融量化应用
|
5月前
|
人工智能 API 开发者
用Qwen3+MCPs实现AI自动发布小红书笔记!支持图文和视频
魔搭自动发布小红书MCP,是魔搭开发者小伙伴实现的小红书笔记自动发布器,可以通过这个MCP自动完成小红书标题、内容和图片的发布。
1950 41
|
5月前
|
人工智能 IDE 开发工具
📘 AI Clouder认证学习笔记|从初入江湖到晨光乍现
正如史蒂夫·乔布斯所言:“求知若渴,虚心若愚。”本文是一篇AI Clouder认证学习笔记,记录了一位初学者在探索AI领域的过程中所经历的挑战与成长。作者分享了从软件安装问题到技术工具掌握的心路历程,并强调了心态与自驱力的重要性。通过Python编程、通义灵码等工具的学习,以及对教学设计的深刻反思。
118 5
|
5月前
|
Web App开发 人工智能 JSON
Windows版来啦!Qwen3+MCPs,用AI自动发布小红书图文/视频笔记!
上一篇用 Qwen3+MCPs实现AI自动发小红书的最佳实践 有超多小伙伴关注,同时也排队在蹲Windows版本的教程。
778 1
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
QwQ-32B为襄阳职业技术学院拥抱强化学习的AI力量
信息技术学院大数据专业学生团队与UNHub平台合作,利用QwQ-32B模型开启AI教育新范式。通过强化学习驱动,构建职业教育智能化实践平台,支持从算法开发到应用的全链路教学。QwQ-32B具备320亿参数,优化数学、编程及复杂逻辑任务处理能力,提供智能教学助手、科研加速器和产教融合桥梁等应用场景,推动职业教育模式创新。项目已进入关键训练阶段,计划于2025年夏季上线公测。
236 10
QwQ-32B为襄阳职业技术学院拥抱强化学习的AI力量
|
10月前
|
人工智能 自然语言处理 搜索推荐
Open Notebook:开源 AI 笔记工具,支持多种文件格式,自动转播客和生成总结,集成搜索引擎等功能
Open Notebook 是一款开源的 AI 笔记工具,支持多格式笔记管理,并能自动将笔记转换为博客或播客,适用于学术研究、教育、企业知识管理等多个场景。
656 0
Open Notebook:开源 AI 笔记工具,支持多种文件格式,自动转播客和生成总结,集成搜索引擎等功能
|
11月前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
885 4

热门文章

最新文章