如何进行 GC 调优提升 Node 应用性能

简介:

前情

用户项目上线进行压测时,CPU 100% 时单进程 QPS 在 100 上下浮动,想进行一些进一步的优化。经过接入 Node.js 性能平台 后,在压测试做 CPU Profile 观察系统 CPU 耗费在什么地方:
可以看到 _tickDomainCallbackgarbage collector 在 CPU 的占比加起来高达 83%,而经过和用户沟通,发现 _tickDomainCallback 内部的耗费 CPU 高的逻辑分别是 typeorm 和自己的 controller 逻辑,typeorm 方面因为 api 变动的原因不太方便升级,controller 逻辑则是已经优化过了暂时没有提升的空间。
因此很自然的,我们会把进一步提升项目性能的目光放到 GC 阶段。这里在 3min 的 CPU 采样期间,GC 阶段的调用占比高达 27.5%,结合当时的性能平台监控数据,我们可以看到绝大部分都是 scavenge 阶段,此时继续进行线上压测,同时做 GC Trace 来获取更多 GC 阶段的详细信息:
在 GC Trace 结果分析图中,可以看到红圈起来的几个重要信息:
  • GC 总暂停时间高达 47.8s,大头是 scavenge
  • 3min 的 GC 追踪日志里面,总共进行了 988 次的 scavenge 回收
  • 每次 scavenge 耗时均值在 50 ~ 60ms 之间

分析

上面对 GC Trace 结果的分析中,可以看到此次 GC 优化的点集中在 scavenge 回收阶段,即新生代的内存回收。那么通过翻阅 V8 的 scavenge 回收逻辑可以知道,这个阶段触发回收的条件是:semi space allocation failed
这样就可以推测,用户的应用在压测期间应该是在新生代频繁生成了大量的小对象,导致默认的 semi space 总是处于很快被填满从而触发 flip 的状态,这才会出现在 GC 追踪期间这么多的 scavenge 回收和对应的 CPU 耗费。面对这样的情况,我们是不是可以通过调整默认的 semi space 的值来进行优化呢?

优化

V8 的代码查看后发现默认的 semi space 的值为 16M(alinode-v3.11.3/node-v8.11.3),经过和用户沟通,我们打算分别调整为 64M128M256M 来进行观察,可以通过在 node 启动应用时加上 --max_semi_space_size 的 flag 来生效。

I. semi space 设置为 64M

将 semi space 调整为 64M 后,进行线上压测,并且在压测期间获取 CPU Profile 和 GC Trace,如下图所示:
可以看到 garbage collector 阶段 CPU 耗费占比下降到 7% 左右,再观察下 GC 追踪结果:
显然,semi space 调大为 64M 后,scavenge 次数从近 1000 次降低到 294 次,但是这种状况下每次的 scavenge 回收耗时没有明显增加,还是在 50 ~ 60ms 之间波动,因此 3min 的 GC 追踪总的停顿时间从 48s 下降到 12s,相对应的,业务的 QPS 提升了约 10% 左右。

II. semi space 设置为 128M

进一步调大 semi space 的值为 128M 时,观察 CPU Profile 结果:
此时 garbage collector 耗费下降相比上面的设置为 64M 并不是很明显,同样观察 GC 追踪结果:
很明显,造成相比设置为 64M 时 GC 占比提升不大的原因是:虽然此时进一步调大了 semi space 至 128M,并且 scavenge 回收的次数从 294 次下降到 145 次,但是每次算法回收耗时近乎翻倍了,因此总收益并不明显。

III. semi space 设置为 256M

进一步将 semi space 调整为 256M 后测试,结果其实和 128M 时非常类似:相对 64M 的情况,此时 3min 内 scavenge 次数从 294 次下降到 72 次,但是相对的每次算法回收耗时波动到了 150ms 左右,因此整体性能并没有显著提升,入下图所示:

IV. 小结

通过以上的测试改进 semi space 的值后,可以看到从默认的 16M 设置到 64M 时,node 应用的整体 GC 性能是有显著提升的,并且反映到压测 QPS 上大约提升了 10%;但是进一步将 semi space 增大到 128M 和 256M 时,收益确并不明显,而且 semi space 本身也是作用于新生代对象快速内存分配,本身不宜设置的过大,因此这次优化最终选取对此项目最优的运行时 semi space 的值为 64M。

尾声

通过 GC 方面的运行时调优来提升我们的项目性能是一种大家不那么常用的方式,这也有很大一部分原因是应用运行时 GC 状态本身不直接暴露给开发者。通过上面这个真实的客户案例,我们可以看到借助于 Node.js 性能平台,实时感知 Node 应用 GC 状态以及进行对应的优化,使得不改一行代码提升项目性能变成了一件非常容易的事情。
目录
相关文章
|
Web App开发 负载均衡 JavaScript
|
4月前
|
JavaScript Unix Linux
nvm与node.js的安装指南
通过以上步骤,你可以在各种操作系统上成功安装NVM和Node.js,从而在不同的项目中灵活切换Node.js版本。这种灵活性对于管理不同项目的环境依赖而言是非常重要的。
1060 11
|
9月前
|
弹性计算 JavaScript 前端开发
一键安装!阿里云新功能部署Nodejs环境到ECS竟然如此简单!
Node.js 是一种高效的 JavaScript 运行环境,基于 Chrome V8 引擎,支持在服务器端运行 JavaScript 代码。本文介绍如何在阿里云上一键部署 Node.js 环境,无需繁琐配置,轻松上手。前提条件包括 ECS 实例运行中且操作系统为 CentOS、Ubuntu 等。功能特点为一键安装和稳定性好,支持常用 LTS 版本。安装步骤简单:登录阿里云控制台,选择扩展程序管理页面,安装 Node.js 扩展,选择实例和版本,等待创建完成并验证安装成功。通过阿里云的公共扩展,初学者和经验丰富的开发者都能快速进入开发状态,开启高效开发之旅。
|
8月前
|
资源调度 JavaScript 前端开发
前端开发必备!Node.js 18.x LTS保姆级安装教程(附国内镜像源配置)
本文详细介绍了Node.js的安装与配置流程,涵盖环境准备、版本选择(推荐LTS版v18.x)、安装步骤(路径设置、组件选择)、环境验证(命令测试、镜像加速)及常见问题解决方法。同时推荐开发工具链,如VS Code、Yarn等,并提供常用全局包安装指南,帮助开发者快速搭建高效稳定的JavaScript开发环境。内容基于官方正版软件,确保合规性与安全性。
7356 23
|
9月前
|
JavaScript 前端开发 数据可视化
【01】Cocos游戏开发引擎从0开发一款游戏-cocos环境搭建以及配置-Cocos Creator软件系统下载安装-node环境-优雅草卓伊凡
【01】Cocos游戏开发引擎从0开发一款游戏-cocos环境搭建以及配置-Cocos Creator软件系统下载安装-node环境-优雅草卓伊凡
532 2
【01】Cocos游戏开发引擎从0开发一款游戏-cocos环境搭建以及配置-Cocos Creator软件系统下载安装-node环境-优雅草卓伊凡
|
9月前
|
弹性计算 JavaScript 前端开发
一键安装!阿里云新功能部署Nodejs环境到ECS竟然如此简单!
一键安装!阿里云新功能部署Nodejs环境到ECS竟然如此简单!
一键安装!阿里云新功能部署Nodejs环境到ECS竟然如此简单!
|
存储 JavaScript 搜索推荐
Node框架的安装和配置方法
安装 Node 框架是进行 Node 开发的第一步,通过正确的安装和配置,可以为后续的开发工作提供良好的基础。在安装过程中,需要仔细阅读相关文档和提示,遇到问题及时解决,以确保安装顺利完成。
651 58
|
8月前
|
数据库
【YashanDB知识库】安装共享集群时报错:YAS-05721 invalid input parameter, reason: node name invalid
【YashanDB知识库】安装共享集群时报错:YAS-05721 invalid input parameter, reason: node name invalid