Python3入门机器学习 - 支撑向量机SVM

简介: SVM的主要思想可以概括为两点:它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。

SVM的主要思想可以概括为两点:

  1. 它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。
  2. 它基于结构风险最小化理论之上在特征空间中构建最优超平面,使得学习器得到全局最优化,并且在整个样本空间的期望以某个概率满足一定上界。


    img_e0de2c454fb92f5d91aeaf77df18c117.png






Hard Margin SVM


img_f2631c283d32472f287e740ae52d9d66.png
n维平面中点到直线的距离公式
对于红点和蓝点每个点应满足的不等式条件
img_18f14a49f0f9ed2f0e082b672447c332.png
image.png
问题最终转化为
img_21c29f45dd661e5f8c74078042fdb1b4.png

即最终转化为有条件的最优化问题
img_a888add75ae5166f912ba11a5ca1be9d.png
有条件的最优化问题




Soft Margin SVM


img_9fcba23ba7744ba19fff6453e93738f1.png
将eta值加入模型正则化项,给模型一定的容错能力,C越大,容错空间越小,C越小,容错空间越大
使用scikit-learn中的svm
from sklearn import datasets
import numpy as np 
import matplotlib.pyplot as plt

#准备数据
iris = datasets.load_iris()
X = iris['data']
y = iris['target']
X = X[y<2,:2]
y = y[y<2]
#数据归一化(SVC涉及距离,应该使用数据归一化处理)
from sklearn.preprocessing import StandardScaler
stdScaler = StandardScaler()
stdScaler.fit(X)
X_standard = stdScaler.transform(X)
#实例化svc对象,训练模型
from sklearn.svm import LinearSVC
svc = LinearSVC(C=1e9)
svc.fit(X_standard,y)
def plot_svc_decision_boundary(model,axis):
    x0,x1 = np.meshgrid(
        np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)),
        np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100))
    )
    X_new = np.c_[x0.ravel(),x1.ravel()]
    
    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)
    
    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    
    plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)

    #除去决策边界外,还要画出svc支撑向量的线
    w = model.coef_[0]
    b = model.intercept_[0]
    
    # w0x0 + w1x1 + b = 0
    # => x1 = -w0/w1*w0-b/w1
    
    plot_x = np.linspace(axis[0],axis[1],200)
    up_y = -w[0]/w[1] * plot_x - b/w[1] +1/w[1]
    down_y = -w[0]/w[1] * plot_x - b/w[1] -1/w[1]
    
    up_index = (up_y>=axis[2])&(up_y<=axis[3])
    down_index = (down_y>=axis[2])&(down_y<=axis[3])
    plt.plot(plot_x[up_index],up_y[up_index],color='black')
    plt.plot(plot_x[down_index],down_y[down_index],color='black')

plot_svc_decision_boundary(svc,axis=[-3,3,-3,3])
plt.scatter(X_standard[y==0,0],X_standard[y==0,1])
plt.scatter(X_standard[y==1,0],X_standard[y==1,1])
plt.show()
img_bd43a3c930e398f7fefcdea4a89f7559.png
svc = LinearSVC(C=1e9)

img_8f35f1d33c4a582279cba77d3de6a158.png
svc = LinearSVC(C=0.1)
多项式特征应用于SVM
#使用制作数据的方法生成数据,噪音为0.15
X,y = datasets.make_moons(noise=0.15)

plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline

def PolynomialSVC(degree,C=1.0):
    return Pipeline([
        ("poly",PolynomialFeatures(degree=degree)),
        ("std_standard",StandardScaler()),
        ("svc",LinearSVC(C=C))
    ])
img_ced5762888d9181de76f5440c73edbec.png
使用多项式核函数的SVM
from sklearn.svm import SVC

def PolynomialKernelSVC(degree,C=1.0):
    return Pipeline([
        ("std_scaler",StandardScaler()),
        ("kernelSVC",SVC(kernel="poly",degree=degree,C=C))
    ])

poly_kernel_svc = PolynomialKernelSVC(degree=5)
poly_kernel_svc.fit(X,y)
plot_decision_boundary(poly_kernel_svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()
img_eb6a1a4b0290c9cb6d529949030056b8.png
与使用LinearSVC不同
原理
img_435c1c09334a2e29e8f5b696d1dedfb1.png
将原来的损失函数转换为右式

img_ac256a9f31c2b3c4071a2a640224050a.png
多项式原本转换是将xi,ji转换为新的矩阵,这里多项式核函数就是K函数,用函数K计算出新的矩阵,达到和原来多项式转换相同的效果

img_1991f04d5d0e4ae738d30ef9aef98570.png
二次项K函数的计算方法

img_0e6397cbfdfa4d3796ba3021971f2a76.png
d代表degree,用多项式核函数的方法计算新的矩阵




RBFKernel(高斯核函数)


img_e722890a7814216daa31a0a8331c61e3.png
gamma为高斯核的超参数
def RBFKernelSVC(gamma=1.0):
    return Pipeline([
        ("std_sacler",StandardScaler()),
        ("svc",SVC(kernel="rbf",gamma=gamma))
    ])

svc = RBFKernelSVC()
svc.fit(X,y)
def plot_decision_boundary(model,axis):
    x0,x1 = np.meshgrid(
        np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)),
        np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100))
    )
    X_new = np.c_[x0.ravel(),x1.ravel()]
    
    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)
    
    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    
    plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)

plot_decision_boundary(svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()
img_4aa0c1a4c54cf28be65270dedf9d4b99.png
gamma=1.0的高斯核函数进行SVC

img_3d83953d5fb965617075f6ec1242e59d.png
gamma=100的高斯核,过拟合

img_50b9e95d494ff6f9819b4ab9cb299333.png
gamma=0.1的高斯核,欠拟合


SVM思想解决回归问题

img_4c5b941abff09539518a4bd5101a1cf0.png

boston = datasets.load_boston()

X = boston['data']
y = boston['target']

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y)

from sklearn.svm import LinearSVR
#epsilon为超参数
def StandardLinearSVR(epsilon=0.1):
    return Pipeline([
        ("std_scaler",StandardScaler()),
        ("svc",LinearSVR(epsilon=epsilon))
    ])

lin_svr = StandardLinearSVR()
lin_svr.fit(X_train,y_train)
lin_svr.score(X_test,y_test)
>>> 0.6735924094720267
目录
相关文章
|
5月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
1467 2
|
22天前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
73 7
|
20天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
22天前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
1月前
|
机器学习/深度学习 数据可视化 算法
Python与机器学习:使用Scikit-learn进行数据建模
本文介绍如何使用Python和Scikit-learn进行机器学习数据建模。首先,通过鸢尾花数据集演示数据准备、可视化和预处理步骤。接着,构建并评估K近邻(KNN)模型,展示超参数调优方法。最后,比较KNN、随机森林和支持向量机(SVM)等模型的性能,帮助读者掌握基础的机器学习建模技巧,并展望未来结合深度学习框架的发展方向。
58 9
Python与机器学习:使用Scikit-learn进行数据建模
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
4月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
104 2
|
4月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
217 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
207 1
|
4月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
277 1

热门文章

最新文章