Python3入门机器学习 - 支撑向量机SVM

简介: SVM的主要思想可以概括为两点:它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。

SVM的主要思想可以概括为两点:

  1. 它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。
  2. 它基于结构风险最小化理论之上在特征空间中构建最优超平面,使得学习器得到全局最优化,并且在整个样本空间的期望以某个概率满足一定上界。


    img_e0de2c454fb92f5d91aeaf77df18c117.png






Hard Margin SVM


img_f2631c283d32472f287e740ae52d9d66.png
n维平面中点到直线的距离公式
对于红点和蓝点每个点应满足的不等式条件
img_18f14a49f0f9ed2f0e082b672447c332.png
image.png
问题最终转化为
img_21c29f45dd661e5f8c74078042fdb1b4.png

即最终转化为有条件的最优化问题
img_a888add75ae5166f912ba11a5ca1be9d.png
有条件的最优化问题




Soft Margin SVM


img_9fcba23ba7744ba19fff6453e93738f1.png
将eta值加入模型正则化项,给模型一定的容错能力,C越大,容错空间越小,C越小,容错空间越大
使用scikit-learn中的svm
from sklearn import datasets
import numpy as np 
import matplotlib.pyplot as plt

#准备数据
iris = datasets.load_iris()
X = iris['data']
y = iris['target']
X = X[y<2,:2]
y = y[y<2]
#数据归一化(SVC涉及距离,应该使用数据归一化处理)
from sklearn.preprocessing import StandardScaler
stdScaler = StandardScaler()
stdScaler.fit(X)
X_standard = stdScaler.transform(X)
#实例化svc对象,训练模型
from sklearn.svm import LinearSVC
svc = LinearSVC(C=1e9)
svc.fit(X_standard,y)
def plot_svc_decision_boundary(model,axis):
    x0,x1 = np.meshgrid(
        np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)),
        np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100))
    )
    X_new = np.c_[x0.ravel(),x1.ravel()]
    
    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)
    
    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    
    plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)

    #除去决策边界外,还要画出svc支撑向量的线
    w = model.coef_[0]
    b = model.intercept_[0]
    
    # w0x0 + w1x1 + b = 0
    # => x1 = -w0/w1*w0-b/w1
    
    plot_x = np.linspace(axis[0],axis[1],200)
    up_y = -w[0]/w[1] * plot_x - b/w[1] +1/w[1]
    down_y = -w[0]/w[1] * plot_x - b/w[1] -1/w[1]
    
    up_index = (up_y>=axis[2])&(up_y<=axis[3])
    down_index = (down_y>=axis[2])&(down_y<=axis[3])
    plt.plot(plot_x[up_index],up_y[up_index],color='black')
    plt.plot(plot_x[down_index],down_y[down_index],color='black')

plot_svc_decision_boundary(svc,axis=[-3,3,-3,3])
plt.scatter(X_standard[y==0,0],X_standard[y==0,1])
plt.scatter(X_standard[y==1,0],X_standard[y==1,1])
plt.show()
img_bd43a3c930e398f7fefcdea4a89f7559.png
svc = LinearSVC(C=1e9)

img_8f35f1d33c4a582279cba77d3de6a158.png
svc = LinearSVC(C=0.1)
多项式特征应用于SVM
#使用制作数据的方法生成数据,噪音为0.15
X,y = datasets.make_moons(noise=0.15)

plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline

def PolynomialSVC(degree,C=1.0):
    return Pipeline([
        ("poly",PolynomialFeatures(degree=degree)),
        ("std_standard",StandardScaler()),
        ("svc",LinearSVC(C=C))
    ])
img_ced5762888d9181de76f5440c73edbec.png
使用多项式核函数的SVM
from sklearn.svm import SVC

def PolynomialKernelSVC(degree,C=1.0):
    return Pipeline([
        ("std_scaler",StandardScaler()),
        ("kernelSVC",SVC(kernel="poly",degree=degree,C=C))
    ])

poly_kernel_svc = PolynomialKernelSVC(degree=5)
poly_kernel_svc.fit(X,y)
plot_decision_boundary(poly_kernel_svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()
img_eb6a1a4b0290c9cb6d529949030056b8.png
与使用LinearSVC不同
原理
img_435c1c09334a2e29e8f5b696d1dedfb1.png
将原来的损失函数转换为右式

img_ac256a9f31c2b3c4071a2a640224050a.png
多项式原本转换是将xi,ji转换为新的矩阵,这里多项式核函数就是K函数,用函数K计算出新的矩阵,达到和原来多项式转换相同的效果

img_1991f04d5d0e4ae738d30ef9aef98570.png
二次项K函数的计算方法

img_0e6397cbfdfa4d3796ba3021971f2a76.png
d代表degree,用多项式核函数的方法计算新的矩阵




RBFKernel(高斯核函数)


img_e722890a7814216daa31a0a8331c61e3.png
gamma为高斯核的超参数
def RBFKernelSVC(gamma=1.0):
    return Pipeline([
        ("std_sacler",StandardScaler()),
        ("svc",SVC(kernel="rbf",gamma=gamma))
    ])

svc = RBFKernelSVC()
svc.fit(X,y)
def plot_decision_boundary(model,axis):
    x0,x1 = np.meshgrid(
        np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)),
        np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100))
    )
    X_new = np.c_[x0.ravel(),x1.ravel()]
    
    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)
    
    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    
    plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)

plot_decision_boundary(svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()
img_4aa0c1a4c54cf28be65270dedf9d4b99.png
gamma=1.0的高斯核函数进行SVC

img_3d83953d5fb965617075f6ec1242e59d.png
gamma=100的高斯核,过拟合

img_50b9e95d494ff6f9819b4ab9cb299333.png
gamma=0.1的高斯核,欠拟合


SVM思想解决回归问题

img_4c5b941abff09539518a4bd5101a1cf0.png

boston = datasets.load_boston()

X = boston['data']
y = boston['target']

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y)

from sklearn.svm import LinearSVR
#epsilon为超参数
def StandardLinearSVR(epsilon=0.1):
    return Pipeline([
        ("std_scaler",StandardScaler()),
        ("svc",LinearSVR(epsilon=epsilon))
    ])

lin_svr = StandardLinearSVR()
lin_svr.fit(X_train,y_train)
lin_svr.score(X_test,y_test)
>>> 0.6735924094720267
目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
186 8
|
8月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
294 7
|
6月前
|
机器学习/深度学习 人工智能 算法
Scikit-learn:Python机器学习的瑞士军刀
想要快速入门机器学习但被复杂算法吓退?本文详解Scikit-learn如何让您无需深厚数学背景也能构建强大AI模型。从数据预处理到模型评估,从垃圾邮件过滤到信用风险评估,通过实用案例和直观图表,带您掌握这把Python机器学习的'瑞士军刀'。无论您是AI新手还是经验丰富的数据科学家,都能从中获取将理论转化为实际应用的关键技巧。了解Scikit-learn与大语言模型的最新集成方式,抢先掌握机器学习的未来发展方向!
926 12
Scikit-learn:Python机器学习的瑞士军刀
|
9月前
|
机器学习/深度学习 数据可视化 算法
Python与机器学习:使用Scikit-learn进行数据建模
本文介绍如何使用Python和Scikit-learn进行机器学习数据建模。首先,通过鸢尾花数据集演示数据准备、可视化和预处理步骤。接着,构建并评估K近邻(KNN)模型,展示超参数调优方法。最后,比较KNN、随机森林和支持向量机(SVM)等模型的性能,帮助读者掌握基础的机器学习建模技巧,并展望未来结合深度学习框架的发展方向。
Python与机器学习:使用Scikit-learn进行数据建模
|
8月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
8月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
11月前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
550 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
12月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
19天前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
6月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。

推荐镜像

更多