Python3入门机器学习 - 集成学习

简介: 集成学习是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合从而获得比单个学习器更好的学习效果的一种机器学习方法。#准备数据X,y = datasets.

集成学习是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合从而获得比单个学习器更好的学习效果的一种机器学习方法。

#准备数据
X,y = datasets.make_moons(noise=0.3,n_samples=500,random_state=42)

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=666)

#逻辑回归预测
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X_train,y_train)
log_reg.score(X_test,y_test)

#SVM预测
from sklearn.svm import SVC
svc = SVC()
svc.fit(X_train,y_train)
svc.score(X_test,y_test)

#决策树预测
from sklearn.tree import DecisionTreeClassifier
dec_clf = DecisionTreeClassifier()
dec_clf.fit(X_train,y_train)
dec_clf.score(X_test,y_test)

y1_predict = log_reg.predict(X_test)
y2_predict = svc.predict(X_test)
y3_predict = dec_clf.predict(X_test)

#使用集成学习的方法决定最终预测结果
y_predict = np.array((y1_predict+y2_predict+y3_predict)>=2,dtype='int')

img_ee49e00d9bbea95db7c5641d7f7d05b7.png


使用sklearn中的VotingClassifier
from sklearn.ensemble import VotingClassifier

voting_clf = VotingClassifier(estimators=[
    ('log_clf',LogisticRegression()),
    ('SVM',SVC()),
    ('dec_clf',DecisionTreeClassifier())
],voting='hard')    #hard为少数服从多数的集成学习方式
voting_clf.fit(X_train,y_train)
voting_clf.score(X_test,y_test)


Soft Voting
img_2e116d8f3d9e7e8128e016ed478df0d9.png
Soft Voting这种方式必须要模型具有预测概率的能力,例如逻辑回归算法本身就是基于概率做分类的,而knn算法一类的非参数学习方法,也可以根据样本数据预测概率,SVM算法可以将probablity属性设置为True以支持概率预测。
voting_clf2 = VotingClassifier(estimators=[
    ('log_clf',LogisticRegression()),
    ('SVM',SVC(probability=True)),
    ('dec_clf',DecisionTreeClassifier(random_state=666))
],voting='soft')

voting_clf2.fit(X_train,y_train)
voting_clf2.score(X_test,y_test)


使用Bagging产生大量子模型的集成学习方法

让每个子模型只看数据的一部分,用放回取样的方式来训练大量的子模型,作为集成学习的方法。

from sklearn.ensemble import BaggingClassifier

#创建Bagging集成学习的参数
#使用DecisionTreeClassifier()作为子模型,决策树作为子模型更容易创建子模型间的差异性,对于Bagging这种方式的集成学习来说,决策树是相对较好的子模型选择
#max_samples决定每个子模型最多参考样本数据量
#n_estimators决定生成多少个子模型
#bootstrap决定采用放回抽样还是不放回抽样,True为放回抽样
bagging_clf = BaggingClassifier(DecisionTreeClassifier(),max_samples=100,n_estimators=500,bootstrap=True)

上例为对样本进行随机采样,但对于Bagging,其实有更多的方法可以进行采样来创建子模型


img_a1d0ddc6d98638cd2390a9c1d0bcc410.png
Random Subspaces

#max_features设置随机取的最大样本特征数量
#bootstrap_features设置对特征进行放回或不放回取样
#oob_score设置对所有样本进行采样,不分离训练和测试数据集,而在随机采样中所有没有被采样的数据作为测试集使用
random_subspaces_clf = BaggingClassifier(DecisionTreeClassifier(),max_samples=500,n_estimators=500,bootstrap=True,
                                        max_features=1,bootstrap_features=True,n_jobs=-1,oob_score=True)
random_subspaces_clf.fit(X,y)
random_subspaces_clf.oob_score_
Random Patches

random_patches_clf = BaggingClassifier(DecisionTreeClassifier(),max_samples=100,n_estimators=500,bootstrap=True,
                                        max_features=1,bootstrap_features=True,n_jobs=-1)
random_patches_clf.fit(X,y)
random_patches_clf.oob_score


随机森林

from sklearn.ensemble import RandomForestClassifier

rf_clf = RandomForestClassifier(n_estimators=500,oob_score=True)
rf_clf.fit(X,y)
rf_clf.oob_score_
Extra Trees
from sklearn.ensemble import ExtraTreesClassifier

et_clf = ExtraTreesClassifier(n_estimators=500,oob_score=True,n_jobs=-1,bootstrap=True)
et_clf.fit(X,y)


Boosting


img_62004ae9eba5479ebb89b0004c85c695.png
Ada Boosting思路,对每次学习后,无法较好拟合的数据点,在下次拟合过程中,增加这些数据点的权重,依次循环生成子模型
from sklearn.ensemble import AdaBoostClassifier

ada_clf = AdaBoostClassifier(DecisionTreeClassifier(),n_estimators=500)
ada_clf.fit(X_train,y_train)
ada_clf.score(X_test,y_test)
img_de2ae0923175018bc24766ceea5e9d2c.png
Gradient Boosting思路,对于上次拟合错误的数据点,给与下一个模型专门训练,依次循环
#GradientBoostingClassifier本身基于决策树进行,因此不需要设置best_estamitor
from sklearn.ensemble import GradientBoostingClassifier
ada_clf = GradientBoostingClassifier(n_estimators=500)
ada_clf.fit(X_train,y_train)
目录
相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
248 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
30天前
|
机器学习/深度学习 人工智能 架构师
Python学习圣经:从0到1,精通Python使用
尼恩架构团队的大模型《LLM大模型学习圣经》是一个系统化的学习系列,初步规划包括以下内容: 1. **《Python学习圣经:从0到1精通Python,打好AI基础》** 2. **《LLM大模型学习圣经:从0到1吃透Transformer技术底座》**
Python学习圣经:从0到1,精通Python使用
|
1月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
348 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
30天前
|
机器学习/深度学习 人工智能 架构师
|
1月前
|
机器学习/深度学习 缓存 Linux
python环境学习:pip介绍,pip 和 conda的区别和联系。哪个更好使用?pip创建虚拟环境并解释venv模块,pip的常用命令,conda的常用命令。
本文介绍了Python的包管理工具pip和环境管理器conda的区别与联系。pip主要用于安装和管理Python包,而conda不仅管理Python包,还能管理其他语言的包,并提供强大的环境管理功能。文章还讨论了pip创建虚拟环境的方法,以及pip和conda的常用命令。作者推荐使用conda安装科学计算和数据分析包,而pip则用于安装无法通过conda获取的包。
61 0
|
4月前
|
监控 druid Java
spring boot 集成配置阿里 Druid监控配置
spring boot 集成配置阿里 Druid监控配置
287 6
|
4月前
|
Java 关系型数据库 MySQL
如何实现Springboot+camunda+mysql的集成
【7月更文挑战第2天】集成Spring Boot、Camunda和MySQL的简要步骤: 1. 初始化Spring Boot项目,添加Camunda和MySQL驱动依赖。 2. 配置`application.properties`,包括数据库URL、用户名和密码。 3. 设置Camunda引擎属性,指定数据源。 4. 引入流程定义文件(如`.bpmn`)。 5. 创建服务处理流程操作,创建控制器接收请求。 6. Camunda自动在数据库创建表结构。 7. 启动应用,测试流程启动,如通过服务和控制器开始流程实例。 示例代码包括服务类启动流程实例及控制器接口。实际集成需按业务需求调整。
363 4
|
4月前
|
消息中间件 Java 测试技术
【RocketMQ系列八】SpringBoot集成RocketMQ-实现普通消息和事务消息
【RocketMQ系列八】SpringBoot集成RocketMQ-实现普通消息和事务消息
317 1
|
5月前
|
消息中间件 Java Kafka
springboot集成kafka
springboot集成kafka
168 2
|
4月前
|
消息中间件 Java Kafka
Spring Boot与Apache Kafka Streams的集成
Spring Boot与Apache Kafka Streams的集成