json模块和pickle模块的用法

简介: 在python中,可以使用pickle和json两个模块对数据进行序列化操作其中:json可以用于字符串或者字典等与python数据类型之间的序列化与反序列化操作pickle可以用于python特有类型与python数据类型之间的序列化与反序列化操作json模块的用法1.

python中,可以使用picklejson两个模块对数据进行序列化操作

其中:

json可以用于字符串或者字典等与python数据类型之间的序列化与反序列化操作
pickle可以用于python特有类型与python数据类型之间的序列化与反序列化操作

json模块的用法

1. 查看json模块内的方法:

>>> import json
>>> dir(json)
['JSONDecodeError', 'JSONDecoder', 'JSONEncoder', '__all__', '__author__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__version__', '_default_decoder', '_default_encoder', 'decoder', 'dump', 'dumps', 'encoder', 'load', 'loads', 'scanner']

2. json模块常用的功能的:dumps,dump,loads,load

3.使用json.dumps方法可以将字典等数据格式化成一个字符串,这样可以方便别的编程语言进行调用

>>> dic1={"k1":"v1","k2":"v2"}
>>> res=json.dumps(dic1)
>>> print(res)
{"k1": "v1", "k2": "v2"}
>>> print(type(res))
<class 'str'>

格式化后的字符串看似跟原来的没什么两样,但是查看格式化后的类型就会发现是一个字符串,已经被json模块处理过了

4.可以使用json.loads进行反序列化

>>> print(type(res2))
<class 'dict'>
>>> print(res)
{"k1": "v1", "k2": "v2"}
>>> print(type(res))
<class 'str'>
>>> res2=json.loads(res)
>>> print(res2)
{'k1': 'v1', 'k2': 'v2'}

5.还可以用json.dump方法把字典等数据类型序列化进入一个文件中,等待别的程序进行调用

import json

dic1={"k1":"v1","k2":"v2"}
with open("f1","w") as f:
    json.dump(dic1,f)

运行上面的代码,可以看到在同级目录下,生成一个名为“f1”的文件,打开f1文件,其内容为:

{"k1": "v1", "k2": "v2"}

6.可以使用json.load方法读取文件f1中的内容:

import json

with open("f1") as f:
    res=json.load(f)
    print(res)
    print(type(res))

打印反序列化后的数据及其类型,得到的结果为:

{'k1': 'v1', 'k2': 'v2'}
<class 'dict'>

pickle模块的用法

1.查看pickle模块内的方法:

>>> import pickle
>>> dir(pickle)
['ADDITEMS', 'APPEND', 'APPENDS', 'BINBYTES', 'BINBYTES8', 'BINFLOAT', 'BINGET', 'BININT', 'BININT1', 'BININT2', 'BINPERSID', 'BINPUT', 'BINSTRING', 'BINUNICODE', 'BINUNICODE8', 'BUILD', 'DEFAULT_PROTOCOL', 'DICT', 'DUP', 'EMPTY_DICT', 'EMPTY_LIST', 'EMPTY_SET', 'EMPTY_TUPLE', 'EXT1', 'EXT2', 'EXT4', 'FALSE', 'FLOAT', 'FRAME', 'FROZENSET', 'FunctionType', 'GET', 'GLOBAL', 'HIGHEST_PROTOCOL', 'INST', 'INT', 'LIST', 'LONG', 'LONG1', 'LONG4', 'LONG_BINGET', 'LONG_BINPUT', 'MARK', 'MEMOIZE', 'NEWFALSE', 'NEWOBJ', 'NEWOBJ_EX', 'NEWTRUE', 'NONE', 'OBJ', 'PERSID', 'POP', 'POP_MARK', 'PROTO', 'PUT', 'PickleError', 'Pickler', 'PicklingError', 'PyStringMap', 'REDUCE', 'SETITEM', 'SETITEMS', 'SHORT_BINBYTES', 'SHORT_BINSTRING', 'SHORT_BINUNICODE', 'STACK_GLOBAL', 'STOP', 'STRING', 'TRUE', 'TUPLE', 'TUPLE1', 'TUPLE2', 'TUPLE3', 'UNICODE', 'Unpickler', 'UnpicklingError', '_Framer', '_Pickler', '_Stop', '_Unframer', '_Unpickler', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '_compat_pickle', '_dump', '_dumps', '_extension_cache', '_extension_registry', '_getattribute', '_inverted_registry', '_load', '_loads', '_test', '_tuplesize2code', 'bytes_types', 'codecs', 'compatible_formats', 'decode_long', 'dispatch_table', 'dump', 'dumps', 'encode_long', 'format_version', 'io', 'islice', 'load', 'loads', 'maxsize', 'pack', 're', 'sys', 'unpack', 'whichmodule']

2.想查看某一个方法的帮助文档:

help(pickle.modules)

比如,我想知道pickle下的dump模块怎么用:

help(pickle.dump)

就可以得到pickle.dump方法的帮助文档

3.pickle模块常用的方法有:dumps,loads,dump,load

4.使用pickle.dumps对数据进行序列化操作

import pickle

l1=[1,2,3,4,5]
t1=(1,2,3,4,5)
dic1={"k1":"v1","k2":"v2","k3":"v3"}

res_l1=pickle.dumps(l1)
res_t1=pickle.dumps(t1)
res_dic=pickle.dumps(dic1)

print(res_l1)
print(res_t1)
print(res_dic)

对数据进行序列化操作后,打印数据得到结果为:

b'\x80\x03]q\x00(K\x01K\x02K\x03K\x04K\x05e.'
b'\x80\x03(K\x01K\x02K\x03K\x04K\x05tq\x00.'
b'\x80\x03}q\x00(X\x02\x00\x00\x00k1q\x01X\x02\x00\x00\x00v1q\x02X\x02\x00\x00\x00k2q\x03X\x02\x00\x00\x00v2q\x04X\x02\x00\x00\x00k3q\x05X\x02\x00\x00\x00v3q\x06u.'

可以看到是一堆二进制乱码

5.使用pickle.loads进行反序列化操作

import pickle

l1=[1,2,3,4,5]
t1=(1,2,3,4,5)
dic1={"k1":"v1","k2":"v2","k3":"v3"}

res_l1=pickle.dumps(l1)
res_t1=pickle.dumps(t1)
res_dic=pickle.dumps(dic1)

print(pickle.loads(res_l1),type(pickle.loads(res_l1)))
print(pickle.loads(res_t1),type(pickle.loads(res_t1)))
print(pickle.loads(res_dic),type(pickle.loads(res_dic)))

打印序列化后的数据及其类型,得到结果为:

[1, 2, 3, 4, 5] <class 'list'>
(1, 2, 3, 4, 5) <class 'tuple'>
{'k1': 'v1', 'k2': 'v2', 'k3': 'v3'} <class 'dict'>

可以看到序列化之前是什么类型的数据,反序列化后其数据类型不变。

6.可以用pickle.dumps把列表,元组或字典序列化进一个文件中以实现永久保存。

把列表l1序列化进一个文件f1中:

import pickle

l1=[1,2,3,4,5]
t1=(1,2,3,4,5)
dic1={"k1":"v1","k2":"v2","k3":"v3"}

with open("f1","wb") as f:
    pickle.dump(l1,f)

7.可以使用pickle.load对文件f1进行反序列化,得到文件f1里保存的数据

import pickle

with open("f1","rb") as f:
    res=pickle.load(f)
    print(res)

反序列化之后,打印数据及其类型可以看到:

[1, 2, 3, 4, 5]
<class 'list'>

使用同样的方法,也可以把元组,或字典序列化进一个文件中以实现永久保存

目录
相关文章
|
7月前
|
JSON 数据处理 数据安全/隐私保护
Ktor库的高级用法:代理服务器与JSON处理
Ktor库的高级用法:代理服务器与JSON处理
|
3月前
|
JSON JavaScript 前端开发
JSON.parse()和JSON.stringify()用法
JSON.parse()和JSON.stringify()用法
80 1
|
3月前
|
JSON 数据格式 Python
Python编程:利用JSON模块编程验证用户
Python编程:利用JSON模块编程验证用户
33 1
|
4月前
|
JSON JavaScript 数据格式
vue写入json数据到文本中+vue引入cdn的用法
vue写入json数据到文本中+vue引入cdn的用法
63 10
|
4月前
|
JSON 前端开发 JavaScript
JSON用法
JSON用法
43 4
|
3月前
|
存储 JSON 数据格式
Python 输入输出与文件处理: io、pickle、json、csv、os.path 模块详解
Python 输入输出与文件处理: io、pickle、json、csv、os.path 模块详解
48 0
|
4月前
|
JSON 数据格式
序列化 json和pickle
序列化 json和pickle
|
5月前
|
存储 JSON JavaScript
python序列化: json & pickle & shelve 模块
python序列化: json & pickle & shelve 模块
|
7月前
|
JSON JavaScript 前端开发
json模块与jsonpath详解
json模块与jsonpath详解
|
8月前
|
JSON 数据格式 Python
Python标准库中包含了json模块,可以帮助你轻松处理JSON数据
【4月更文挑战第30天】Python的json模块简化了JSON数据与Python对象之间的转换。使用`json.dumps()`可将字典转为JSON字符串,如`{&quot;name&quot;: &quot;John&quot;, &quot;age&quot;: 30, &quot;city&quot;: &quot;New York&quot;}`,而`json.loads()`则能将JSON字符串转回字典。通过`json.load()`从文件读取JSON数据,`json.dump()`则用于将数据写入文件。
57 1