史上最全人工智能进阶干货

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

给大家看一组最新数据。

c62170b40ba77c6652d838e8fdd2eb8c59a04f16

2018年最新数据:python、大数据、人工智能从业者薪资表

为什么人工智能行业的工资那么高?

无论是科研院所,商业巨头还是初创企业,各行各业都在大力开发或者引进人工智能,由于储备不足,导致人工智能人才现在出现缺口,而且非常巨大。

据领英今日发布的全球AI领域技术人才分布图显示,中国目前的AI人才缺口超过5万人。 人才供不应求,导致领域岗位的薪资也自然水涨船高。

731c5554c10bfed2ec45eeab01544cfa6eedabd5

很多人,尤其是应届毕业生和刚参加工作的程序员们,都想在这股 AI 热潮中,凭借实力和简历脱颖而出。然而,很多人在第一关就被 HR 刷掉了,更别说技术面了。

想必大家都知道原因。

目前的人工智能,对于本科生来说并没有深入的AI专业,毕竟这些方向属于高层次的知识,需要一定的基础。虽然由于现在AI热还有工业界对于这方面人才的强烈需求,开始有大学专门开设了AI和数据科学专业。

但是,这些学生毕业出来后所拥有的技能和企业所需的人才标准却是不对等的。

1628e18e12825f933b57659f9d182fc64a9b6d54

像BAT的人工智能部门;高校人工智能研究相关工作;明星创业公司,比如四小龙,商汤,矿世,科大等。如果你只学过计算机专业,想进入这些公司或者机构并没那么简单,因为你没有实操的项目,你对人工智能没有整体性和深度性的把控和学习。

而且如果你的学校背景不强硬(清华北大中科大等),就更别指望这些公司的offer了。

f11548ec4faf989e5383e1a2a84441cbdca73acf

但这是不是就意味着你没机会了?

不。至少你还拥有学习的权利和能力。

你可以自学,也可以跟着这方面的专家导师学。

对于入门人工智能这个问题,不少同学跃跃欲试,其实人工智能的核心就是机器学习(Machine Learning)和深度学习。而它们的基础,就是编程(Python/c++等)和数学(高等数学/线性代数/概率论等)。

7291b1db02800811718b3e41be86ee97cc07983b

另外,AI是逻辑算法的执行,底层架构是大数据。所以人工智能如何变厉害?就要喂它“吃”大数据。大数据就像人工智能的食物,跟人类一样,吃进去的食物愈新鲜、愈干净,人工智能就愈健康。

所以你想要进入这个领域,需要至少经过以下四个阶段的学习。

第一阶段:编程

python入门/python基本数据类型/python网络爬虫

第二阶段:数据挖掘

线性回归/贝叶斯统计/Airbnb数据分析实战

第三阶段:机器学习

机器学习入门/强化入门/机器学习实战

第四阶段:深度学习

神经网络、卷积神经网络/递归神经网络、图像风格迁移

几百个课时的学习是基本,但若想真正学明白,至少需要一些时间,当然根据每个人基础不同会有所差异,也不能排除你很短时间就能搞定。

如果你想投入 AI 的怀抱,但却苦于不知如何下手。而当你准备自学机器学习和深度学习时,又被外面那些贵的要命的培训课程吓得不行时,你还可以选择成为本次万门大学人工智能专业的学员。


原文发布时间为:2018-10-13

本文作者:万门大学

本文来自云栖社区合作伙伴“PaperWeekly”,了解相关信息可以关注“PaperWeekly”。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
人工智能 数据挖掘 大数据
Interview:人工智能&大数据岗位面试—【数据分析师】的简介、技能、待遇、进阶的详细攻略
Interview:人工智能&大数据岗位面试—【数据分析师】的简介、技能、待遇、进阶的详细攻略
Interview:人工智能&大数据岗位面试—【数据分析师】的简介、技能、待遇、进阶的详细攻略
|
SQL 数据采集 人工智能
Interview:人工智能&大数据岗位面试—【数据分析师】的简介、技能、待遇、进阶的详细攻略(一)
Interview:人工智能&大数据岗位面试—【数据分析师】的简介、技能、待遇、进阶的详细攻略
|
机器学习/深度学习 人工智能 自然语言处理
人工智能进阶心得:在战斗中学习,在学习中战斗
12月20日的北京云栖大会上,由云栖社区主办的开发者技术进阶峰会再度开启。在此之前,我们整理了2017杭州云栖大会开发者技术进阶专场上的精彩分享内容。
4462 0
|
4天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
5天前
|
人工智能 算法 安全
人工智能在医疗诊断中的应用与前景####
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战以及未来的发展趋势。随着科技的不断进步,AI技术正逐步渗透到医疗行业的各个环节,尤其在提高诊断准确性和效率方面展现出巨大潜力。通过分析当前AI在医学影像分析、疾病预测、个性化治疗方案制定等方面的实际应用案例,我们可以预见到一个更加智能化、精准化的医疗服务体系正在形成。然而,数据隐私保护、算法透明度及伦理问题仍是制约其进一步发展的关键因素。本文还将讨论这些挑战的可能解决方案,并对AI如何更好地服务于人类健康事业提出展望。 ####
|
4天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
本文探讨了人工智能(AI)在医疗诊断领域的应用及其面临的挑战。随着技术的不断进步,AI已经在医学影像分析、疾病预测和个性化治疗等方面展现出巨大潜力。然而,数据隐私、算法透明度以及临床整合等问题仍然是亟待解决的关键问题。本文旨在通过分析当前AI技术在医疗诊断中的具体应用案例,探讨其带来的优势和潜在风险,并提出相应的解决策略,以期为未来AI在医疗领域的深入应用提供参考。
27 3
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在教育领域的应用与挑战
随着科技的不断进步,人工智能(AI)技术已经深入到社会的各个领域,其中教育领域尤为突出。本文旨在探讨人工智能在教育领域的应用现状、面临的挑战以及未来的发展趋势。通过分析AI技术如何改变传统教学模式,提高教育质量和效率,同时指出其在实际应用中可能遇到的问题和挑战,为未来教育的发展提供参考。
32 2
|
10天前
|
机器学习/深度学习 人工智能 搜索推荐
深度探索人工智能在医疗影像诊断中的应用与挑战####
本文深入剖析了人工智能(AI)技术,特别是深度学习算法在医疗影像诊断领域的创新应用,探讨其如何重塑传统诊断流程,提升诊断效率与准确性。同时,文章也客观分析了当前AI医疗影像面临的主要挑战,包括数据隐私、模型解释性及临床整合难题,并展望了未来发展趋势。 ####
|
8天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在医疗诊断中的应用
【10月更文挑战第36天】随着人工智能技术的飞速发展,其在各行各业的应用日益广泛,特别是在医疗领域。本文将深入探讨AI技术如何革新传统医疗诊断流程,提高疾病预测的准确性,以及面临的挑战和未来发展方向。通过具体案例分析,我们将看到AI如何在提升医疗服务质量、降低医疗成本方面发挥关键作用。
82 58
|
9天前
|
机器学习/深度学习 人工智能 自动驾驶
探索人工智能的无限可能:从基础概念到实际应用
【10月更文挑战第35天】在这篇文章中,我们将一起走进人工智能的世界,探索它的无限可能。从基础概念出发,我们将深入理解人工智能的定义、发展历程以及主要技术。然后,我们将通过具体的代码示例,展示如何利用Python和TensorFlow实现一个简单的人工智能模型。最后,我们将探讨人工智能在现实世界中的应用,包括自动驾驶、医疗健康、金融等领域,并思考其未来发展的可能性。让我们一起开启这场人工智能的奇妙之旅吧!
18 1