自制操作系统Antz day08——实现内核 (中) 扩展内核

简介:   在前几天的任务中,我们已经简单实现了MBR,直接操作显示器和硬盘操作来加载其他扇区的程序,如今已经可以进入保护模式了,并且编写了我们自己的内核程序,这个内核虽然什么也没有做,但还是成功被加载进内存了。接下来我们要将这个内核程序编写详细的内容了。

  Antz系统更新地址: https://www.cnblogs.com/LexMoon/category/1262287.html

  Linux内核源码分析地址:https://www.cnblogs.com/LexMoon/category/1267413.html

  Github地址:https://github.com/CasterWx 

  在前几天的任务中,我们已经简单实现了MBR,直接操作显示器和硬盘操作来加载其他扇区的程序,如今已经可以进入保护模式了,并且编写了我们自己的内核程序,这个内核虽然什么也没有做,但还是成功被加载进内存了。接下来我们要将这个内核程序编写详细的内容了。

0. 切换堆栈和GDT

 1 SELECTOR_KERNEL_CS    equ    8
 2 
 3 extern    cstart
 4 extern    gdt_ptr
 5 
 6 [SECTION .bss]
 7 StackSpace        resb    2 * 1024
 8 StackTop:        
 9 
10 [section .text]    
11 global _start    
12 
13 _start:
14     mov    esp, StackTop
15     sgdt    [gdt_ptr]    
16     call    cstart    
17     lgdt    [gdt_ptr]    
18     jmp    SELECTOR_KERNEL_CS:csinit
19 csinit:        
20     hlt

  这四行代码就可以完成切换堆栈和更换GDT任务了。StackTop定义在.bss段中,大小为2KB,操作GDT时用到了gdt_ptr和cstart分别时一个全局变量和全局函数,定义在c代码start.c中。

#include "type.h"
#include "const.h"
#include "protect.h"

PUBLIC    void*    memcpy(void* pDst, void* pSrc, int iSize);
PUBLIC void    disp_str(char * pszInfo);

PUBLIC    t_8            gdt_ptr[6];     
PUBLIC    DESCRIPTOR        gdt[GDT_SIZE];
 
PUBLIC void cstart()
{
    disp_str("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n-----\"cstart\" begins-----\n");

    memcpy(    &gdt,                    
        (void*)(*((t_32*)(&gdt_ptr[2]))),   
        *((t_16*)(&gdt_ptr[0])) + 1        
        );

    t_16* p_gdt_limit = (t_16*)(&gdt_ptr[0]);
    t_32* p_gdt_base  = (t_32*)(&gdt_ptr[2]);
    *p_gdt_limit = GDT_SIZE * sizeof(DESCRIPTOR) - 1;
    *p_gdt_base  = (t_32)&gdt;
}

 

  cstart()首先把位于Loader中的原GDT全部复制给新的GDT,然后把gdt_ptr中的内容换为新的GDT的基地址和界限。复制GDT用的是memepy,至于它的函数定义就不详细写了,这个是c中非常出名的一个函数了。

  当然还有一些类型,结构体和宏,这些可以放置在.h的头文件中。

  protect.h :

 1 #ifndef    _TINIX_PROTECT_H_
 2 #define    _TINIX_PROTECT_H_
 3 
 4 typedef struct s_descriptor        /* 共 8 个字节 */
 5 {
 6     t_16    limit_low;         
 7     t_16    base_low; 
 8     t_8    base_mid;     
 9     t_8    attr1;         
10     t_8    limit_high_attr2; 
11     t_8    base_high;         
12 }DESCRIPTOR;
13 
14 #endif

  type.h :

 1 #ifndef    _TINIX_TYPE_H_
 2 #define    _TINIX_TYPE_H_
 3 
 4 
 5 typedef    unsigned int        t_32;
 6 typedef    unsigned short        t_16;
 7 typedef    unsigned char        t_8;
 8 typedef    int            t_bool;
 9 
10 
11 #endif 

  const.h :

 1 #ifndef    _TINIX_CONST_H_
 2 #define    _TINIX_CONST_H_
 3 
 4 
 5 #define    PUBLIC     
 6 #define    PRIVATE    static    
 7 
 8 #define    GDT_SIZE    128
 9 
10 
11 #endif

  接下来在linux下编译链接。

  nasm -f elf -o kernel.o kernel.asm

  nasm -f elf -o string.o string.asm

  gcc -c -o start.o start.c

  ld -s  -Ttext 0x30400 -o kernel.bin kernel.o string.o start.o

  将bin使用工具写入(day01或者dd) ,打开查看结果。

  可以看到cstart成功切换了堆栈与GDT。

 

1. Makefile

  随着代码量的增多,编译链接的命令也越来越多了,你可能之前没有接触过Makefile,但这是一个非常高效的东西,值得学习。

  Makefile 是和 make 命令一起配合使用的,很多大型项目的编译都是通过 Makefile 来组织的, 如果没有 Makefile, 那很多项目中各种库和代码之间的依赖关系不知会多复杂,Makefile的组织流程的能力如此之强, 不仅可以用来编译项目, 还可以用来组织我们平时的一些日常操作. 这个需要大家发挥自己的想象力.。

  Makefile基本语法如下:

1 target ... : prerequisites ...
2     command
3     ...
1 target ... : prerequisites ; command
2     command
3     ...

  target也就是一个目标文件,可以是Object File,也可以是执行文件。还可以是一个标签(Label),对于标签这种特性,在后续的“伪目标”章节中会有叙述。

  prerequisites就是要生成那个target所需要的文件或是目标。

 

  command也就是make需要执行的命令。(任意的Shell命令)

 

  这是一个文件的依赖关系,也就是说,target这一个或多个的目标文件依赖于prerequisites中的文件,其生成规则定义在command中。说白一点就是说,prerequisites中如果有一个以上的文件比target文件要新的话,command所定义的命令就会被执行。这就是Makefile的规则。也就是Makefile中最核心的内容。

 

  来举个例子:

 1 # Makefile for boot
 2 
 3 # Programs, flags, etc.
 4 ASM        = nasm
 5 ASMFLAGS    = 
 6 
 7 # This Program
 8 TARGET        = boot.bin loader.bin
 9 
10 # All Phony Targets
11 .PHONY : everything clean all
12 
13 # Default starting position
14 everything : $(TARGET)
15 
16 clean :
17     rm -f $(TARGET)
18 
19 all : clean everything
20 
21 boot.bin : boot.asm ./include/load.inc ./include/fat12hdr.inc
22     $(ASM) $(ASMFLAGS) -o $@ $<
23 
24 loader.bin : loader.asm ./include/load.inc ./include/fat12hdr.inc ./include/pm.inc
25     $(ASM) $(ASMFLAGS) -o $@ $<

  #是注释的意思, =用来定义变量 , ASM和ASMFLAGS就是两个变量,使用变量要用$(ASM)和$(ASMFLAGS) 。

  对于 target :  prerequistites 

          command 

  意思就是想要得到target就需要指向命令command。

  target依赖于prerequistites,当prerequistites中至少有一个文件比target文件新时,command才会执行。

  看看最后两行,要想得到loader.bin就需要执行命令:$(ASM) $(ASMFLAGS) -o $@ $<

  loader.bin依赖于loader.asm load.inc fat12hdr.inc pm.inc ,这些中只要有一个比target新,command就会执行。

  那么这里的command是什么意思呢?

1 $(ASM) $(ASMFLAGS) -o $@ $<

  $@  $< 其实就是target,prerequistites的第一个名字,所以这个命令等价于

1 nasm -o loader.bin loader.asm

  此外你可能还发现了在外的大标签,他们是动作名称,如everything,all,clean,它们用于make后面,比如make all ,make clean,然后就会执行相应的当作。

  对于Makefile我们目前只需要知道这些就可以了。

  对于Antz内核的编写将会暂时停止几天,最近准备看看Linux内核的相关知识。同步会更新在https://www.cnblogs.com/LexMoon/category/1267413.html

 

目录
相关文章
|
22天前
|
存储 物联网 调度
操作系统的心脏:内核深度解析
在数字世界的构建中,操作系统扮演着基石的角色,而其核心—内核,则是这一复杂系统的灵魂。本文将深入探讨操作系统内核的工作原理,揭示它是如何管理硬件资源、运行程序以及提供系统服务的。通过理解内核的结构和功能,我们可以更好地把握计算机系统的运作机制,进而优化和创新我们的技术实践。
|
30天前
|
安全 Linux 编译器
探索Linux内核的奥秘:从零构建操作系统####
本文旨在通过深入浅出的方式,带领读者踏上一段从零开始构建简化版Linux操作系统的旅程。我们将避开复杂的技术细节,以通俗易懂的语言,逐步揭开Linux内核的神秘面纱,探讨其工作原理、核心组件及如何通过实践加深理解。这既是一次对操作系统原理的深刻洞察,也是一场激发创新思维与实践能力的冒险。 ####
|
2天前
|
存储 调度 开发者
探索操作系统的心脏:内核与用户空间的交互之旅
在数字世界的无限广阔中,操作系统扮演着枢纽的角色,连接硬件与软件,支撑起整个计算生态。本篇文章将带领读者深入操作系统的核心——内核,揭示其与用户空间的神秘交互。我们将透过生动的例子和易于理解的比喻,深入浅出地探讨这一复杂主题,旨在为非专业读者揭开操作系统的神秘面纱,同时为有一定基础的读者提供更深层次的认识。从进程管理到内存分配,从文件系统到设备驱动,每一个环节都是精确而优雅的舞蹈,它们共同编织出稳定而高效的计算体验。让我们开始这场奇妙之旅,一探操作系统背后的科学与艺术。
10 5
|
5天前
|
安全 数据处理 调度
探索操作系统的心脏:内核与用户空间的交互之旅
操作系统,这个现代计算机体系的守门人,承载着软件与硬件间复杂而精妙的对话。本文将深入其核心,揭秘内核与用户空间之间如何协同工作,确保数据安全且高效地流动。我们将透过代码示例的镜头,观察这一过程的具体实现,同时反思在设计与使用操作系统时面临的挑战与机遇。
|
6天前
|
存储 算法 调度
探索操作系统的心脏:内核设计与实现
在数字世界的庞大机器中,操作系统扮演着至关重要的角色。本文将深入浅出地探讨操作系统的核心——内核的设计原理与实现细节。我们将从内核的概念出发,逐步深入到内核的各个组成部分,包括进程管理、内存管理、文件系统以及输入输出系统的工作机制。通过本文,读者不仅能够了解操作系统内核的基本框架,还将掌握如何通过编程实践加深对操作系统核心概念的理解。让我们一起揭开操作系统内核的神秘面纱,探索它的精妙设计,并体会编程实践中的乐趣和挑战。
21 2
|
13天前
|
缓存 资源调度 安全
深入探索Linux操作系统的心脏——内核配置与优化####
本文作为一篇技术性深度解析文章,旨在引领读者踏上一场揭秘Linux内核配置与优化的奇妙之旅。不同于传统的摘要概述,本文将以实战为导向,直接跳入核心内容,探讨如何通过精细调整内核参数来提升系统性能、增强安全性及实现资源高效利用。从基础概念到高级技巧,逐步揭示那些隐藏在命令行背后的强大功能,为系统管理员和高级用户打开一扇通往极致性能与定制化体验的大门。 --- ###
40 9
|
15天前
|
存储 人工智能 安全
操作系统的心脏——内核深度解析
【10月更文挑战第29天】 本文深入探讨了操作系统的核心组件——内核,包括其定义、功能、架构以及在现代计算中的重要性。通过对比不同操作系统内核的设计哲学和技术实现,揭示了内核如何影响系统性能、稳定性和安全性。此外,文章还讨论了未来内核技术的潜在发展方向,为读者提供了一个全面了解内核工作原理的平台。
|
12天前
|
缓存 运维 网络协议
深入Linux内核架构:操作系统的核心奥秘
深入Linux内核架构:操作系统的核心奥秘
31 2
|
13天前
|
存储 消息中间件 算法
深入探索操作系统的心脏——内核机制解析
本文旨在揭示操作系统核心——内核的工作原理,通过剖析其关键组件与机制,为读者提供一个清晰的内核结构图景。不同于常规摘要的概述性内容,本文摘要将直接聚焦于内核的核心概念、主要功能以及其在系统管理中扮演的角色,旨在激发读者对操作系统深层次运作原理的兴趣与理解。
|
14天前
|
算法 调度 C语言
探索操作系统的心脏:内核与用户空间的交互
【10月更文挑战第36天】本文将深入探讨操作系统的核心组件—内核,以及它如何与用户空间进行交互。我们将通过浅显易懂的语言和生动的例子来揭示这一复杂主题的面纱。文章不仅涉及理论知识,还会展示具体的代码示例,帮助读者更好地理解内核机制。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供新的视角和深入的理解。
下一篇
无影云桌面