Python数据分析之糗事百科第二弹

简介: 上回说到糗事百科段子的分析,今天对另外一张表,也就是用户信息表的分析。数据预处理导入数据import pandas as pdimport pymongoimport jieba.

上回说到糗事百科段子的分析,今天对另外一张表,也就是用户信息表的分析。

数据预处理

  • 导入数据
import pandas as pd
import pymongo
import jieba.analyse
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
client = pymongo.MongoClient('localhost',port = 27017)
qiushi = client['qiushi']
qiushi_info = qiushi['qiushi_info']
data1 = pd.DataFrame(list(qiushi_info.find()))

qiushi = client['qiushi']
user_info = qiushi['user_info']
data2 = pd.DataFrame(list(user_info.find()))

data1为段子信息,data2为用户信息,二个表都有用户url,我们可以将其merge。

  • merge
all_data = pd.merge(data1,data2,on='user_url')
all_data
  • 去重
    由于有些高玩用户发过多个段子,所以这里需要去重,通过用户id获取唯一值。
data3 = all_data.drop_duplicates(['id'])

段子手星座分布

对于数字类的分析,上次已经讲过几个,我主要是对段子手的星座和地区感兴趣,今天就分析下,大家也可以每个维度都分析下。

xingzuo = data3.groupby('constellation').size()

plt.figure(figsize=(10,6),dpi=80)
labels = list(xingzuo.index)
sizes = list(xingzuo)
plt.xlabel('星座')
plt.ylabel('用户个数')
plt.title('糗事百科用户星座分布图')
plt.bar(range(len(sizes)),sizes,tick_label=labels,color='#99CC01',alpha=0.7)#alpha为透明度
plt.grid(color='#95a5a6',linestyle='--', linewidth=1,axis='y',alpha=0.6)
plt.legend(['用户个数'])
for x,y in zip(range(len(sizes)),sizes):
    plt.text(x, y,y, ha='center', va= 'bottom')

除了不详的之外,天秤座用户最多,白羊座最少。

天秤座常常追求和平和谐的感觉,他们善于交谈,沟通能力极强是他们最大的优点。但他们最大的缺点,往往是犹豫不决。天秤座的人容易将自己的想法加诸到别人身上,天秤座的人要小心这点

白羊座就像小孩子一样,直率、热情、冲动,但也十分的自我为中心和孩子气

段子手地区分布

如图,数据是分省和市的,我们只提取省的数据,这部分可以在爬虫时进行处理。


list_1=[]
for i in range(0,273):
    list_1.append(data3.iat[i,-6].split('· ')[0])
data3['province'] = list_1
data3
sheng = data3.groupby('province').size()
plt.figure(figsize=(20,6),dpi=80)
labels = list(sheng.index)
sizes = list(sheng)
plt.xlabel('省市')
plt.ylabel('用户个数')
plt.title('糗事百科用户省市分布图')
plt.bar(range(len(sizes)),sizes,tick_label=labels,color='#99CC01',alpha=0.7)#alpha为透明度
plt.grid(color='#95a5a6',linestyle='--', linewidth=1,axis='y',alpha=0.6)
plt.legend(['用户个数'])
for x,y in zip(range(len(sizes)),sizes):
    plt.text(x, y,y, ha='center', va= 'bottom')

大家看看,哪个省盛产段子手。我们也可以调用百度api,获取省的经纬度,然后用BDP画出这样的地图。

总结

通过2个案例主要讲解了python数据分析的基本流程。

  • 数据导入
  • 数据预处理
  • 数据整合
  • 数据可视化
相关文章
|
3月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
377 0
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
191 2
|
10月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
11月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
200 3
|
11月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
310 0
|
8月前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
|
11月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
|
11月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
323 5
|
11月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
11月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势

推荐镜像

更多