React Native架构分析

简介:

Facebook 于2015年9月15日推出react native for Android 版本, 加上2014年底已经开源的IOS版本,至此RN (react-native)真正成为跨平台的客户端框架。本篇主要是从分析代码入手,探讨一下RN在安卓平台上是如何构建一套JS的运行框架。

一、 整体架构

RN 这套框架让 JS开发者可以大部分使用JS代码就可以构建一个跨平台APP。 Facebook官方说法是learn once, run everywhere, 即在Android 、 IOS、 Browser各个平台,程序画UI和写逻辑的方式都大致相同。因为JS 可以动态加载,从而理论上可以做到write once, run everywhere, 当然要做额外的适配处理。如图:


RN需要一个JS的运行环境, 在IOS上直接使用内置的javascriptcore, 在Android 则使用webkit.org官方开源的jsc.so。 此外还集成了其他开源组件,如fresco图片组件,okhttp网络组件等。

RN 会把应用的JS代码(包括依赖的framework)编译成一个js文件(一般命名为index.android.bundle), , RN的整体框架目标就是为了解释运行这个js 脚本文件,如果是js 扩展的API, 则直接通过bridge调用native方法; 如果是UI界面, 则映射到virtual DOM这个虚拟的JS数据结构中,通过bridge 传递到native , 然后根据数据属性设置各个对应的真实native的View。 bridge是一种JS 和 JAVA代码通信的机制, 用bridge函数传入对方module 和 method即可得到异步回调的结果。

对于JS开发者来说, 画UI只需要画到virtual DOM 中,不需要特别关心具体的平台, 还是原来的单线程开发,还是原来HTML 组装UI(JSX),还是原来的样式模型(部分兼容 )。RN的界面处理除了实现View 增删改查的接口之外,还自定义一套样式表达CSSLayout,这套CSSLayout也是跨平台实现。 RN 拥有画UI的跨平台能力,主要是加入Virtual DOM编程模型,该方法一方面可以照顾到JS开发者在html DOM的部分传承, 让JS 开发者可以用类似DOM编程模型就可以开发原生APP , 另一方面则可以让Virtual DOM适配实现到各个平台,实现跨平台的能力,并且为未来增加更多的想象空间, 比如react-cavas, react-openGL。而实际上react-native也是从react-js演变而来。

对于 Android 开发者来说, RN是一个普通的安卓程序加上一堆事件响应, 事件来源主要是JS的命令。主要有二个线程,UI main thread, JS thread。 UI thread创建一个APP的事件循环后,就挂在looper等待事件 , 事件驱动各自的对象执行命令。 JS thread 运行的脚本相当于底层数据采集器, 不断上传数据,转化成UI 事件, 通过bridge转发到UI thread, 从而改变真实的View。 后面再深一层发现, UI main thread 跟 JS thread更像是CS 模型,JS thread更像服务端, UI main thread是客户端, UI main thread 不断询问JS thread并且请求数据,如果数据有变,则更新UI界面。

二、 代码流程

1、JS入口


对于JS开发者来说, 整个RN APP就只有一个JS文件, 而开发者需要编写的就只有如上部分。主要是四个部分:

require 所有依赖到的组件, 相当于java中的import 或者 c++ 中的include。

var AwesomeProject = React.createClass 创建APP, 并且在render函数中返回UI界面结构(采用JSX ), 实际经过编译, 都会变成JS 代码, 比如 变成 React.createElement(View,{style:{flex:1}},

var styles = StyleSheet.create({, 创建CSS 样式,实际上会直接当做参数直接反馈到上面的React.createElement

AppRegistry.registerComponent('AwesomeProject', () => AwesomeProject); 以上三个更像是参数,这个才是JS 程序的入口。即把当前APP的对象注册到AppRegistry组件中, AppRegistry组件是js module。

接着就等待Native事件驱动渲染JS端定义的APP组件。

2、Native 入口


对于Android 开发者, 普通安卓程序入口是Activity.onCreate()方法 , 主要有三个对象

ReactRootView, Android 标准的FrameLayout对象,另外一个功能是提供react 世界的入口,函数startReactApplication实际调用attachMeasuredRootView触发react世界的初始化。

MyReactPackage, 配置当前APP 需要加载的模块,RN 的JS框架会在初始化阶段就会把native的模块按照配置加载到JS数据结构中(MessageQueue), 从而才能在JS 层即可直接判断native是否支持某个模块。支持三种类型模块配置, native module(实际就是不需要操作View结构的API), view managers(实际是映射到virtual DOM中的View组件), JS module 。

ReactInstanceManager, 构建React世界的运行环境,发送事件到JS世界, 驱动整个React世界运转。 通过builder可以创建不同的React环境, 比如内置js 路径, 开发环境dev的js名字,是否支持调试等。doInBackground会加载指定的JS文件, onPostExecute会调用runApplication接口运行JS APP。


ReactRootView第一次onMeasured计算完成, 然后会利用ReactInstanceManager创建 ReactContext上下文环境。重要的是初始化bridge以及加载js文件, 利用JSBundleLoader方法加载index.android.bundle. 如图


此刻进入JS 世界, 开发者的js 语句连同react js框架层被执行。该步骤最终语句是执行AppRegistry.registerComponent注册一个APP组件,但还没有到开始渲染。

当运行环境准备完毕, 则调用bridge方法运行上步注册的APP组件,触发一连串JS 和 Native相互通信,配合事件驱动, 从而完成native世界的渲染。如图利用bridge方法运行上面注册的JS APP组件的runApplication方法:


3、事件循环

所有的APP在操作系统中, 最终都会使用一个事件循环来运行。

一般来说,JS 开发者只需要开发各个组件对象,监听组件事件, 然后利用framework接口调用render方法渲染组件。

而实际上,JS 也是单线程事件循环,不管是 API调用, virtural DOM同步, 还是系统事件监听, 都是异步事件,采用Observer(观察者)模式监听JAVA层事件, JAVA层会把JS 关心的事件通过bridge直接使用javascriptCore的接口执行固定的脚本, 比如"requrire (test_module).test_methode(test_args)"。此时,UI main thread相当于work thread, 把系统事件或者用户事件往JS层抛,同时,JS 层也不断调用模块API或者UI组件 , 驱动JAVA层完成实际的View渲染。JS开发者只需要监听JS层framework定义的事件即可。如图即JS thread 的消息队列循环:


分析代码可知,消息线程创建于ReactContext环境初始化时, MessageQueueThread.java当中, 该消息队列主要接收系统事件(如 Vsync、timer、doFrame、backkey)、UI事件(如键盘弹起、滚动等)以及 callback事件(JS 的回调函数)。

如图即ReactRootView往JS 传递键盘弹出的事件:


而对于Android 开发者, Android 已经为APP创建一个默认的 Main Looper, 不管是Android System 还是JS 事件都是发送到Main thread通过UI渲染出来。如图即是MessageQueueThread.java直接使用主线程Looper。


跟普通APP不同是,此时JS thread相当于work thread, JS会把对应的事件或者数据通过bridge发送到UI thread。 如图即是native Java层收到的JS事件的处理函数:


三、 通信机制

RN框架最主要的就是实现了一套JAVA和 JS通信的方案,该方案可以做到比较简便的互调对方的接口。一般的JS运行环境是直接扩展JS接口,然后JS通过扩展接口发送信息到主线程。但RN的通信的实现机制是单向调用,Native线程定期向JS线程拉取数据, 然后转成JS的调用预期,最后转交给Native对应的调用模块。这样最终同样也可以达到Java和 JS 定义的Module互相调用的目的。

1、JS调用java

JS调用java 使用通过扩展模块require('NativeModules')获取native模块,然后直接调用native公开的方法,比如require('NativeModules').UIManager.manageChildren()。 JS 调用require('NativeModules')实际上是获取MessageQueue里面的一个native模块列表的属性, 如:



使用_genModules 加载所有native module到 RemoteModules数组。RemoteModules每项都是一个映射到native module的JS对象。


调用RemoteModules 的方法, 实际是把moduleID、methodId、args放入三个queue保存。


至此, JS端调用完毕, queue中数据要等待Native层通过bridge来取。

native层会在一定条件下触发事件, 通过bridge调用callFunctionReturnFlushedQueue

和 invokeCallbackAndReturnFlushedQueue ,得到的返回值就是这三个queue。


bridge会把这三个queue交给parseMethodCalls解析, 然后通过JNI回调函数转发到Java层


m_callback 函数是在bridge初始化的时候设置到c++层, 如:


然后在回调函数中,陆续调用ReactCallback对象的call方法,weakCallback就是java层初始化bridge时传入的NativeModulesReactCallback对象,也就是ReactCallback的子类。


到此,转入Java层. 从native module配置表中,取到对应module和method,并执行。


2、java调用JS

之前ReactInstanceManager 中运行JS APP组件,JAVA 是调用catalystInstance.getJSModule 方法获取JS 对象,然后直接访问对象方法runApplication。实际上getJSModule 返回的是js对象在java层的映射对象。

java层可以调用的JS模块主要在CoreModulesPackage.createJSModules方法配置,有:


如果调用JSModules对象的方法,则会动态代理跳转到(mBridge).callFunction(moduleId, methodId, arguments);


接着调用ReactBridge中声明的JNI 函数,

public native void callFunction(int moduleId, int methodId, NativeArray arguments);



通过JS 的require和 apply函数拼接一段JS 代码, 然后用javascriptCore的脚本运行接口执行,并得到返回值。


这样就在JS引擎中运行了一段JS代码并得到返回值,实现了JAVA层到JS层的调用。每次有JAVA对JS的访问, 则在返回值中从JS层的messageQueue.js中抓取之前累积的一堆JS calls。因为JAVA层要把时间同步、 系统帧绘制等事件传递给JS, 因此queue中的JS calls都会在很短的时间内被抓取。

四、 扩展机制

1、 模块扩展(native module)

官方文档操作:

https://facebook.github.io/react-native/docs/native-modules-android.html#content

2、 组件扩展(UI component)

官方文档操作:

https://facebook.github.io/react-native/docs/native-components-android.html#content

因为react模块加载主要在ReactPackage类配置,因此扩展可以通过反射、外部依赖注入等机制,可以做到跟H5容器一样实现动态插拔的插件式扩展。比如API扩展, 通过外部传入扩展模块的类名即可反射构造函数创建新的API:

@OverridepublicList createNativeModules(ReactApplicationContext reactContext){

List modules = new ArrayList();

modules.addAll(Arrays.asList(

new AsyncStorageModule(reactContext),

new FrescoModule(reactContext),

new NetworkingModule(reactContext),

new WebSocketModule(reactContext),

new ToastModule(reactContext)));

if (mModuleList != null && mModuleList.size() > 0) {

for (int i = 0; i < mModuleList.size(); i++) {

try {

Log.i("MyReactPackage", "add Module:" + mModuleList.get(i));

Class c = Class.forName(mModuleList.get(i));

Class[] parameterTypes = {ReactApplicationContext.class};                    java.lang.reflect.Constructorconstructor=c.getConstructor(parameterTypes);Object[] parameters ={reactContext};                    NativeModulemodule= (NativeModule)constructor.newInstance(parameters);modules.add(module);                }catch (Exception e){

Log.i("MyReactPackage", "add Module Exeception:" + e);

e.printStackTrace();

}}        }        return modules;    }

五、 离线加载

代码离线

离线包支持。 目前RN官方支持内置APK打包以及dev server在线更新。而实际上,一般的容器都会实现一套离线包发布平台。大致的实现方案是自定义一个JSBundleLoader,对接到应用管理发布平台。


分离react 框架代码和应用业务代码。目前官方的生产工具是把框架代码和业务代码弄成一个bundle。 但框架代码很大,需要共用, 因此要分离出框架代码单独前置加载。 应用业务代码变成很小一段JS代码单独发布。如果每次都加载框架代码, 启动业务代码会比较慢,一个helloworld都需要4秒左右。初步实践方案是把ReactInstanceManager设置成全局变量共享,在Native APP 启动初始化或者第一次进入RN APP时初始化ReactInstanceManager。这个可能会导致多个RN APP全局变量冲突。

在线更新

离线包更新主要依赖应用管理发布平台,大致可以做到跟H5离线包一致。

资源离线

一般说的是图片资源比较多, RN 使用控件显示图片,如:


通过source属性设置图片资源路径, 映射到native层:



因此不管是离线包内资源还是系统资源,只要能转换成Android 统一资源定位URI对象,即可获取到图片。

在线资源

如果是静态资源,则直接URI统一定位。如果是动态资源, 比如要通过网关获取到base64格式的图片,则需要native扩展特别接口。

六、 总结

1、 可能瓶颈

*因为bridge,  JS和 JAVA是异步互通,如果实现复杂多API的逻辑,可能会导致部分效率损耗在多线程通信。JS 异步的编程方式多多少少带来一些不便。*因为bridge,  可能某些场景做不到及时响应。比如帧动画的实时控制。*Android版本刚推出不完善,并且目前RN版本还在不停的更新中, 可能存在暗坑。*加入JS引擎, 内存的控制比较麻烦,会比普通native增加不少。

2、 待研究

动态注入的API插件实现方案,能跟h5容器共用实现。

因为RN已经具备很多的灵活, JS也可以做到很多大型控件,所以native UI扩展需要定义JS 和 native边界, 哪些是JS 实现, 哪些是native实现。

动画的实现方式。

H5容器和RN容器融合方案

write once, 完全跨平台。

JS 层支持 Fragment manager

目录
相关文章
|
1月前
|
存储 前端开发 JavaScript
深入理解React Fiber架构及其性能优化
【10月更文挑战第5天】深入理解React Fiber架构及其性能优化
74 1
|
2月前
|
安全 数据处理 数据安全/隐私保护
C/S架构与B/S架构的适用场景分析
C/S架构(客户端/服务器架构)与B/S架构(浏览器/服务器架构)在适用场景上各有特点,主要取决于应用的具体需求、用户群体、系统维护成本、跨平台需求等因素。
203 6
|
8天前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
9天前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
46 4
|
1月前
|
前端开发 JavaScript Android开发
Flutter 与 React Native - 详细深入对比分析(2024 年)
Flutter和React Native是两大跨平台框架,各有优缺点。Flutter性能优越,UI灵活,使用Dart;React Native生态广泛,适合JavaScript开发。
193 5
Flutter 与 React Native - 详细深入对比分析(2024 年)
|
17天前
|
JavaScript 前端开发 算法
前端优化之超大数组更新:深入分析Vue/React/Svelte的更新渲染策略
本文对比了 Vue、React 和 Svelte 在数组渲染方面的实现方式和优缺点,探讨了它们与直接操作 DOM 的差异及 Web Components 的实现方式。Vue 通过响应式系统自动管理数据变化,React 利用虚拟 DOM 和 `diffing` 算法优化更新,Svelte 通过编译时优化提升性能。文章还介绍了数组更新的优化策略,如使用 `key`、分片渲染、虚拟滚动等,帮助开发者在处理大型数组时提升性能。总结指出,选择合适的框架应根据项目复杂度和性能需求来决定。
|
28天前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
45 1
|
2月前
|
存储 监控 安全
SaaS业务架构:业务能力分析
【9月更文挑战第20天】在数字化时代,软件即服务(SaaS)模式逐渐成为企业软件解决方案的首选。SaaS 业务架构设计对于提供高效、可靠的服务至关重要。其核心业务能力包括:用户管理(注册登录、角色权限)、数据管理(存储备份、安全共享)、业务流程管理(设计定制、工作流自动化)、应用集成(第三方应用、移动应用)及客户服务(支持培训、反馈改进)。通过优化这些能力,可为企业提供更高效、可靠的 SaaS 服务。
54 11
|
3月前
|
存储 JavaScript 前端开发
探索React状态管理:Redux的严格与功能、MobX的简洁与直观、Context API的原生与易用——详细对比及应用案例分析
【8月更文挑战第31天】在React开发中,状态管理对于构建大型应用至关重要。本文将探讨三种主流状态管理方案:Redux、MobX和Context API。Redux采用单一存储模型,提供预测性状态更新;MobX利用装饰器语法,使状态修改更直观;Context API则允许跨组件状态共享,无需第三方库。每种方案各具特色,适用于不同场景,选择合适的工具能让React应用更加高效有序。
77 0
|
3月前
|
消息中间件 负载均衡 Kafka
Kafka 实现负载均衡与故障转移:深入分析 Kafka 的架构特点与实践
【8月更文挑战第24天】Apache Kafka是一款专为实时数据处理和流传输设计的高性能消息系统。其核心设计注重高吞吐量、低延迟与可扩展性,并具备出色的容错能力。Kafka采用分布式日志概念,通过数据分区及副本机制确保数据可靠性和持久性。系统包含Producer(消息生产者)、Consumer(消息消费者)和Broker(消息服务器)三大组件。Kafka利用独特的分区机制实现负载均衡,每个Topic可以被划分为多个分区,每个分区可以被复制到多个Broker上,确保数据的高可用性和可靠性。
63 2