交换排序—快速排序(Quick Sort)

简介: 基本思想: 1)选择一个基准元素,通常选择第一个元素或者最后一个元素, 2)通过一趟排序讲待排序的记录分割成独立的两部分,其中一部分记录的元素值均比基准元素值小。另一部分记录的 元素值比基准值大。 3)此时基准元素在其排好序后的正确位置 4)然后分别对这两部分记录用同样的方法继续进行排序,直到整个序列有序。

基本思想:

1)选择一个基准元素,通常选择第一个元素或者最后一个元素,

2)通过一趟排序讲待排序的记录分割成独立的两部分,其中一部分记录的元素值均比基准元素值小。另一部分记录的 元素值比基准值大。

3)此时基准元素在其排好序后的正确位置

4)然后分别对这两部分记录用同样的方法继续进行排序,直到整个序列有序。

快速排序的示例:

(a)一趟排序的过程:

(b)排序的全过程

算法的实现:

 递归实现:

 
void print(int a[], int n){
	for(int j= 0; j<n; j++){
		cout<<a[j] <<"  ";
	}
	cout<<endl;
}

void swap(int *a, int *b)
{
	int tmp = *a;
	*a = *b;
	*b = tmp;
}

int partition(int a[], int low, int high)
{
	int privotKey = a[low];								//基准元素
	while(low < high){								    //从表的两端交替地向中间扫描
		while(low < high  && a[high] >= privotKey) --high;  //从high 所指位置向前搜索,至多到low+1 位置。将比基准元素小的交换到低端
		swap(&a[low], &a[high]);
		while(low < high  && a[low] <= privotKey ) ++low;
		swap(&a[low], &a[high]);
	}
	print(a,10);
	return low;
}


void quickSort(int a[], int low, int high){
	if(low < high){
		int privotLoc = partition(a,  low,  high);  //将表一分为二
		quickSort(a,  low,  privotLoc -1);			//递归对低子表递归排序
		quickSort(a,   privotLoc + 1, high);		//递归对高子表递归排序
	}
}

int main(){
	int a[10] = {3,1,5,7,2,4,9,6,10,8};
	cout<<"初始值:";
	print(a,10);
	quickSort(a,0,9);
	cout<<"结果:";
	print(a,10);

}



分析:

快速排序是通常被认为在同数量级(O(nlog2n))的排序方法中平均性能最好的。但若初始序列按关键码有序或基本有序时,快排序反而蜕化为冒泡排序。为改进之,通常以“三者取中法”来选取基准记录,即将排序区间的两个端点与中点三个记录关键码居中的调整为支点记录。快速排序是一个不稳定的排序方法。

 
快速排序的改进

在本改进算法中,只对长度大于k的子序列递归调用快速排序,让原序列基本有序,然后再对整个基本有序序列用插入排序算法排序。实践证明,改进后的算法时间复杂度有所降低,且当k取值为 8 左右时,改进算法的性能最佳。算法思想如下:

 
void print(int a[], int n){
	for(int j= 0; j<n; j++){
		cout<<a[j] <<"  ";
	}
	cout<<endl;
}

void swap(int *a, int *b)
{
	int tmp = *a;
	*a = *b;
	*b = tmp;
}

int partition(int a[], int low, int high)
{
	int privotKey = a[low];					//基准元素
	while(low < high){					//从表的两端交替地向中间扫描
		while(low < high  && a[high] >= privotKey) --high; //从high 所指位置向前搜索,至多到low+1 位置。将比基准元素小的交换到低端
		swap(&a[low], &a[high]);
		while(low < high  && a[low] <= privotKey ) ++low;
		swap(&a[low], &a[high]);
	}
	print(a,10);
	return low;
}


void qsort_improve(int r[ ],int low,int high, int k){
	if( high -low > k ) { //长度大于k时递归, k为指定的数
		int pivot = partition(r, low, high); // 调用的Partition算法保持不变
		qsort_improve(r, low, pivot - 1,k);
		qsort_improve(r, pivot + 1, high,k);
	} 
} 
void quickSort(int r[], int n, int k){
	qsort_improve(r,0,n,k);//先调用改进算法Qsort使之基本有序

	//再用插入排序对基本有序序列排序
	for(int i=1; i<=n;i ++){
		int tmp = r[i]; 
		int j=i-1;
		while(tmp < r[j]){
			r[j+1]=r[j]; j=j-1; 
		}
		r[j+1] = tmp;
	} 

} 



int main(){
	int a[10] = {3,1,5,7,2,4,9,6,10,8};
	cout<<"初始值:";
	print(a,10);
	quickSort(a,9,4);
	cout<<"结果:";
	print(a,10);

}

 

相关文章
|
1月前
|
搜索推荐 C语言
【排序算法】快速排序升级版--三路快排详解 + 实现(c语言)
本文介绍了快速排序的升级版——三路快排。传统快速排序在处理大量相同元素时效率较低,而三路快排通过将数组分为三部分(小于、等于、大于基准值)来优化这一问题。文章详细讲解了三路快排的实现步骤,并提供了完整的代码示例。
57 4
|
26天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
117 61
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
103 8
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
116 7
|
2月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
37 1
|
2月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
41 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
2月前
|
算法 安全 Java
介绍一下比较与交换算法
【10月更文挑战第20天】介绍一下比较与交换算法
20 0
|
2月前
|
算法
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
34 0
|
2月前
|
存储 搜索推荐 算法
【排序算法(二)】——冒泡排序、快速排序和归并排序—>深层解析
【排序算法(二)】——冒泡排序、快速排序和归并排序—>深层解析
|
2月前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
82 0