【Python标准库:re】如何在Python中使用正则表达式

简介: Python的正则表达式Python通过导入标准库re实现正则表达式(regular expression),Python的正则表达式引擎和Perl一样,并且兼容Perl流派的元字符。

Python的正则表达式

Python通过导入标准库re实现正则表达式(regular expression),Python的正则表达式引擎和Perl一样,并且兼容Perl流派的元字符。

元字符

Python支持的元字符很多,一种是比较常见,我之前也就只会用这些

  • .表示任意一个字符,默认不匹配换行符,制表符
  • |表示或,ca|bd会匹配ca或bd,而不是cab, cbd, 如果想要匹配后者,则需要用到()进行分组
  • ^,$表示位置符号,行首和行尾 如^ab$匹配ab, 不匹配eab, abe,aeb
  • 量词,表示重复数,*任意多次, +一次以上, ?0次或一次, {m,n}m~n次, {m}重复m次,{m,}重复大于m次
  • 在上述量词后接?, 就从贪婪模式变为非贪婪模式。举个例子,对于abbbbbb这个字符串,ab*ab*?的结果不同,前者匹配abbbbbb,后者匹配a,也就是贪婪模式尽可能多匹配。
  • [...]表示多选项,比如a[bc]就可以匹配ab,ac, 如果是[a-z]那么表示从a到z范围. 所有元字符在[]中都会被认为是普通字符。所有元字符在[]
  • (...)表示捕获型分组,被(...)匹配到部分,可以用\1,\2进行引用
  • "" 表示转义,由于该符号也是字符串的元字符,那么在构建模式的时候要万分小心,因为Python会先对字符串进行加工,然后才会传入到正则引擎中。也就是说,也就是如果你想匹配"" , 你的模式写法得是\\\\,因为如果只写\\,会被Python先翻译成\,所以必须写成\\\\。因此建议用使用原始字符串(raw string),即r"\\"

下面的一些比较高级,在我写作时能记得的元字符,基本上都是(?...)一类的增强型标记,具体含义和?后紧接的第一个字符有关

  • (?:...): 非捕获型分组,也就是仅仅分组,正则引擎不会记住他用于后续引用
  • (?=...): 向后检查,要求当前位置后符合...表示的模式, (?!...)也是向后检查,只不过要求当前位置紧接的内容不能被...匹配
  • (?<=...)(?<!...)是向前检查。

在《精通正则表达式》中,作者举了一个例子,将"12345679"变为更容易阅读的"12,345,679"形式。 也就是找到一个位置前面是数字,后面是3的倍数个数字的位置插入逗号

re.sub(r"(?<=\d)(?=(\d\d\d)+$)",",","1234567")

下面是我需要翻阅资料才能记得

  • (?P<name>...): 在之前捕获型括号的基础上,将捕获到的内容赋值给name, 其中该内容可以用(?P=name)进行引用
  • (?#...): 这个仅仅是注释,不做任意匹配
  • (?aiLmsux)比较复杂,记不太起来
  • (?(id/name)yes-pattern|no-pattern)更加复杂,需要举一个例子。(<)?(\w+@\w+(?:\.\w+)+)(?(1)>|$)来解释,当然这个例子理解起来也不容易。解释起来就是,第一个括号先尝试捕获匹配<, 编号为1,然后是第二个括号匹配“字符串@字符串”,比如说user@host,然后第三个括号表示不捕获分组, 识别".com"这类,然后第四个括号就是看第一个括号有没有捕获到东西,如果有就去匹配>,没有则是匹配行尾。也就是你的邮箱地址要么为"user@host.com",要么为<user@host.com>,其他都是不符合要求。

常用函数

一般用法都是用re.compile构建一个正则表达式对象,这个正则表达式对象可以用在re.match,re.search,re.find,re.findall等函数里,同时该对象也有.match,.search方法。举个例子,比如说你知道了一个形如GSExxx的GEO编号,你需要提取这个编号下的所有GSMxxx编号,然后根据这个GSMxxx编号去提取SRA编号,以随便找的GSE100566为例。

首先利用Python的requests库抓取网页信息

# Python
import re
import requests
base_url = "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc="
acc      = "GSE101571"

resp = requests.get(base_url + acc)
contents = resp.text()

然后构建一个正则表达式,去捕获所有的GSMxxx类型的编号

pattern = "GSM\d+"
GSM_acc = re.findall(pattern, contents)

或许你不满足于此,你还希望捕获到每个GSM编号后的描述,也就是"GSM2686880 SET-2_STAT1-D1",这两个部分你都需要。通过检查网页元素,你发现了一个规律,也就是这两个元素是在一个tr

img_0bcc7d3d1fe98379ee98cf2b4911f29e.jpe
HTML结构

你信心满满的构建了一个匹配模式,结果啥都没有匹配到

pattern = re.compile("<tr><td.*?><a.*?>(GSM\d+)</a></td><td.*?>(.*?)</td>")
re.search(pattern, contents)

你发现这似乎由于这个HTML里有很多神奇的空白和"\n",原本方便人类阅读的记号却阻碍了数据处理,你必须做点什么,你想到了可以用re.sub进行替换,所以你做了如下的事情

contents = re.sub(r"\n\s*","",contents)

最后你终于用原来的匹配模式得到了以元组数据结构的结果

result = re.findall(pattern, contents)

下一步根据GSMxxx编号去提取SRX编码。这一步的核心就是从元祖中提取元素,然后构建一个url去爬取新的网页,然后提取SRX编号即可以。先测试第一个,

r1 = results[0][0]
r1_resp = requests.get(base_url + r1)
m = re.search("SRX\d+", r1_resp.text)
m.group(0)

然后开始遍历,存储到字典中。考虑到网络延迟所耽误的时间远远大于内存分配的时间,也就没有必须要预先分配内存空间。

sra_dict = {}
for acc in results:
    key = acc[0]
    resp = requests.get(base_url + key)
    value = re.search("SRX\d+",resp.text).group(0)
    sra_dict[key] = value

事实证明网络不好,这个简单的程序是可以跑半天的。

目录
相关文章
|
2天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
11 0
|
1天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
15 7
|
1天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
12 3
|
4天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
18 5
|
3天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
14 1
|
12天前
|
数据可视化 数据挖掘 Python
Seaborn 库创建吸引人的统计图表
【10月更文挑战第11天】本文介绍了如何使用 Seaborn 库创建多种统计图表,包括散点图、箱线图、直方图、线性回归图、热力图等。通过具体示例和代码,展示了 Seaborn 在数据可视化中的强大功能和灵活性,帮助读者更好地理解和应用这一工具。
29 3
|
1天前
|
文字识别 自然语言处理 API
Python中的文字识别利器:pytesseract库
`pytesseract` 是一个基于 Google Tesseract-OCR 引擎的 Python 库,能够从图像中提取文字,支持多种语言,易于使用且兼容性强。本文介绍了 `pytesseract` 的安装、基本功能、高级特性和实际应用场景,帮助读者快速掌握 OCR 技术。
18 0