DRAGEN: 硬件和软件共同加速的变异检测工具

简介: DRAGEN这是一篇工具介绍贴,考虑这个工具是要钱的,那些动不动就说别人忘了初心的用户肯定认为我写的是软文,所以这些人就不要继续往下看了。
img_ebb34ec97469dd71d42dbb6c0e0b6040.jpe
DRAGEN

这是一篇工具介绍贴,考虑这个工具是要钱的,那些动不动就说别人忘了初心的用户肯定认为我写的是软文,所以这些人就不要继续往下看了。

变异检测的软件目前虽然有很多,SAMtools/BCFtools, GATK, FreeBayes等,但是我看到的大部分文章都是用GATK UG/HC。GATK的速度是有目共睹的慢,不过我平时就分析几个重测序样品,基本上过个两天就能出结果,所以速度不是我的刚需。

如果想要追求速度的话,一种思路是可以将参考基因组进行分割,然后分别并行运算加速,或者搭建Spark环境,用GATK4的Spark模式。还有一种就是根据GATK的算法思想,用C/C++重新写软件。去年的时候我看到了一个软件叫做sentieon,用C/C++实现了GATK的算法,瞬间速度就上来了,这是一个商业公司的收费软件,目前国内用的比较少。

我原本以为这个速度已经够快的,直到我最近去demo了另一个软件,edico公司开发的DRAGEN,这个效率简直是丧心病狂。它从硬件和软件上同时进行加速

  • 需要购买他们公司的硬件,128G内存,56线程,2T固态硬盘,以及一个FPGA芯片
  • 比对这一步的算法基于而不是BWT转换(这就是为什么要128G内存)
  • 比对之前要将索引加载到芯片中,所以每次只能比对一个任务
  • 由于IO读写是非常大瓶颈,所以采用了固态硬盘
  • 程序由C/C++开发,所以效率极高

为啥我要去demo这个工具呢,主要因为最近服务器资源紧缺(因为之前用的服务器要么是合租的,要么是蹭别人的),而老板又在催进度,而要买的服务器还在路上。就在这走投无路的情况下,我突然想起2个月之前和这个设备的负责人说要去测试一下(换句话说,我放了他两个月的鸽子。。)

看完软件说明书,我就坐着地铁揣着硬盘,硬盘里装着一个260M的基因组和230个GBS测序的数据(80G)跑到仁科生物公司以测试软件之名实为蹭别人的服务器。

首先我把数据一股脑地全从硬盘里拷到固态硬盘挂载的 /staging

然后是建立索引:

dragen -h-ht-reference reference.fa --output-directory reference --build-hash-table true

接着我现场写了一个shell脚本用来批量分析,命名为 run_dragen.sh

#!/bin/bash
set -e
set -u
set -o pipefail
REF=$1
SAMPLES=$2
samples=$(cat $SAMPLES)
# loading hash table
dragen -l -r $REF
# calling gvcf for each sample
mkdir -p GVCF
for sample in ${samples}
do
    prefix=$(basename ${sample})
    if [ ! -f GVCF/${prefix}.done ]; then
    dragen -f -r $REF \
        -1 ${sample}.1.fq.gz -2 ${sample}.2.fq.gz \
        --enable-variant-caller true \
        --vc-emit-ref-confidence GVCF \
        --vc-sample-name ${prefix} \
        --output-directory GVCF \
        --output-file-prefix ${prefix} \
        --enable-duplicate-marking false \
        --enable-map-align-output true
    touch GVCF/${prefix}.done
    fi
done
find GVCF/ -name "*.gvcf.gz" | grep -v "hard" > gvcfs.list
# merge gvcf and join calling
mkdir -p vcf_result
if [ -f gvcfs.list -a ! -f vcf_result/combine.gvcf.gz]; then
    dragen -f -r $REF \
        --enable-combinegvcfs true \
        --output-directory vcf_result \
        --output-file-prefix combine\
        --variant-list gvcfs.listfi
if [ ! -f vcf_result/join_calling.vcf.gz ]
then
    dragen -f -r $REF \
        --enable-joint-genotyping true \
        --output-directory vcf_result \
        --output-file-prefix joint_calling\
        --variant vcf_result/combine.gvcf.gzfi

运行方法:

# 创建一个文件存放待分析的样本
find /staging/xuzhougeng/00-raw-data/ -name "*.fq.gz"| sed 's/\(.*\)\.[12].fq.gz/\1/' | uniq > samples.txt
# 执行命令, 参数分别是索引的文件夹和样本文件
bash run_dragen.sh reference samples.txt &> run.log &

按照我的估算,每个样本至少得要花个20分钟得到GVCF文件吧,毕竟我用BWA-MEM10个线程进行比对也要10min呀。事实证明我还是低估了程序猿的能力值,每个GBS样品得到GVCF文件居然只要不到1min。。

RUN TIME,,Total runtime,00:00:56.528,56.53

得到的GVCF可以进行合并,但是有一个问题,就是超过200样本就会出错,而且Join calling运行也不需要combine,所以后续的代码就删掉了merge这一步

...find GVCF/ -name "*.gvcf.gz" | grep -v "hard" > gvcfs.list
# join callingif [ ! -f vcf_result/join_calling.vcf.gz ]t
hen    dragen -f -r $REF \
        --enable-joint-genotyping true \
        --output-directory vcf_result \
        --output-file-prefix joint_calling\
        --variant-list gvcfs.listfi

在Joint Calling步骤花的时间比较长,时间是"RUN TIME,,Total runtime,00:14:24.272,864.27".

虽然软件运行速度是很快,但是写出上面的代码并且调试却花了我好久时间,于是这两天时间我就在公司里敲代码。除了GBS数据,第二天我还带着另一个260M基因组(Canu初步组装和arrow polish后到版本)和一个100X重测序数据(压缩后10G数据)去测试,分别在固态硬盘和我的移动硬盘里测试,结果如下:

固态硬盘 draft.fa: 06:31(mapping) + 28.17 (varaint calling) 
普通移动硬盘 draft.fa: 28.33(mapping) + 29.03 (varaint calling)
固态硬盘 polish.fa: 06:09(mapping) + 13.093(variant calling)
普通移动硬盘 polish.fa: 27.46(mapping) + 13.33(varint calling)

这里有两个结论

  • 是比对的IO对速度影响非常大,也就是要一定要在固态硬盘里发挥它最大的威力。
  • 重测序样本与参考基因组的差异程序影响variant calling这一步。

从上面的测试而言,DRAGEN的运算速度的确是非常快的。虽然你需要先把拷贝数据这一步会花点时间,但是你从公司拿到的数据其实也要拷贝到服务器才行,所以拷贝数据是不可避免的。

对于公司而言,原本需要两天才能跑完的分析可能现在2小时或者1小时不到就能搞定了,那么业务速度就快了,此外也不需要搭建spark或者自己搞一套对GATK进行并行,更何况GATK商用是要钱的,国内很多公司都是偷偷的在用吧。对于医院而言,嗯,他们不差钱。对于科研机构而言,除非专门搞一个平台管理,不然一年花掉2T的分析数据量还是有难度。

PS:当然都是比对,所以这个软件也能用于分析RNA-seq,ChIP-seq,ATAC-seq等illumina高通量测序数据,但是三代测序数据目前搞不定,不知道未来会不会支持。

PPS: EDICO公司看到这篇文章后请给我打广告费

目录
相关文章
|
6月前
|
人工智能 自然语言处理 安全
关于大模型越狱的多种方式,有这些防御手段
【8月更文挑战第22天】在AI领域,大语言模型与视觉-语言模型显著提升了自然语言处理及视觉任务能力,但同时也引发了严重的安全与伦理问题,特别是大模型越狱现象。越狱可通过梯度、进化、演示、规则或多智能体等方式实现,利用模型弱点操纵其输出。针对此威胁,研究者提出包括提示检测、扰动、演示、生成干预及响应评估等多种防御策略,旨在增强模型安全性与可靠性。然而,攻击手段的多样性和有效性评估构成了主要挑战。[论文](https://arxiv.org/pdf/2407.01599)详细探讨了这些问题。
215 17
|
9月前
|
监控
HWiNFO硬件检测工具
始于上世纪90年代并且一直在稳定更新的老牌硬件分析及监控工具HWiNFO ,针对个人及非商业用途免费。自从7.20版推出中文版以来,经过几个版本的改进,中文愈发准确。适合电脑系统中使用的系统信息监测工具,HWiNFO可以显示出处理器、主板及芯片组、pcmcia接口、bios版本、内存等信息。HWiNFO(64位)还可以给用户全面展示计算机的硬件信息以及性能。
96 0
|
9月前
|
安全 网络安全 Android开发
云端防御策略:融合云服务与网络安全的未来构建高效的Android应用:从内存优化到电池寿命
【4月更文挑战第30天】 随着企业加速向云计算环境转移,数据和服务的云端托管成为常态。本文探讨了在动态且复杂的云服务场景下,如何构建和实施有效的网络安全措施来保障信息资产的安全。我们将分析云计算中存在的安全挑战,并展示通过多层次、多维度的安全框架来提升整体防护能力的方法。重点关注包括数据加密、身份认证、访问控制以及威胁检测与响应等关键技术的实践应用,旨在为读者提供一种结合最新技术进展的网络安全策略视角。 【4月更文挑战第30天】 在竞争激烈的移动市场中,Android应用的性能和资源管理已成为区分优秀与平庸的关键因素。本文深入探讨了提升Android应用效率的多个方面,包括内存优化策略、电池
|
资源调度 运维 监控
启发式算法在监控软件中的用途
启发式算法在监控软件中的运用可以帮助解决复杂的优化和决策问题。与传统的精确算法相比,启发式算法更加适用于大规模、高维度和实时性要求较高的监控场景。
553 0
|
存储 安全 算法
|
安全 数据安全/隐私保护 芯片
|
安全 数据安全/隐私保护 网络安全

热门文章

最新文章