Java并发编程 -- AQS入门&实现可重入锁

简介: Java并发编程 -- AQS可能会看的一脸懵逼,今天实战一个项目练手AQSMyAQSLock.java/** * Created by Fant.

Java并发编程 -- AQS可能会看的一脸懵逼,今天实战一个项目练手AQS

MyAQSLock.java

/**
 * Created by Fant.J.
 */
public class MyAQSLock implements Lock {

    private Helper helper = new Helper();

    private class Helper extends AbstractQueuedSynchronizer {

        @Override
        protected boolean tryAcquire(int arg) {

            // 如果第一个线程进来,可以拿到锁,因此我们可以返回true

            // 如果第二个线程进来,则拿不到锁,返回false。有种特例,如果当前进来的线程和当前保存的线程是同一个线程,则可以拿到锁,但是有代价,要更新状态值

            // 如何判断是第一个线程进来还是其他线程进来?
            //获取状态值
            int state = getState();
            Thread t = Thread.currentThread();
            //如果状态=0,那就是第一个线程
            if (state == 0) {
                if (compareAndSetState(0, arg)) {
                    //设置当前线程为独占锁线程
                    setExclusiveOwnerThread(t);
                    return true;
                }
            } else if (getExclusiveOwnerThread() == t) {
                setState(state + 1);
                return true;
            }
            return false;
        }

        @Override
        protected boolean tryRelease(int arg) {

            // 锁的获取和释放肯定是一一对应的,那么调用此方法的线程一定是当前线程
            //获取当前线程,如果不等于独占锁的线程
            if (Thread.currentThread() != getExclusiveOwnerThread()) {
                throw new RuntimeException();
            }

            int state = getState() - arg;

            boolean flag = false;

            if (state == 0) {
                setExclusiveOwnerThread(null);
                flag = true;
            }

            setState(state);

            return flag;
        }

        Condition newCondition() {
            return new ConditionObject();
        }

    }

    @Override
    public void lock() {
        helper.acquire(1);
    }

    @Override
    public void lockInterruptibly() throws InterruptedException {
        helper.acquireInterruptibly(1);
    }

    @Override
    public boolean tryLock() {
        return helper.tryAcquire(1);
    }

    @Override
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return helper.tryAcquireNanos(1, unit.toNanos(time));
    }

    @Override
    public void unlock() {
        helper.release(1);
    }

    @Override
    public Condition newCondition() {
        return helper.newCondition();
    }
}

从上往下分析,首先继承Lock接口,然后定义一个子类为非公共内部帮助器类Helper类,Helper类继承AQS,重写它的tryAcquire和tryRelease方法。作为锁的获取和释放。然后填充Lock的子类实现。(为什么Lock子类方法里传值都是1呢,因为AQS源码就是这样,1一路传到底),注释还算详细,就不在这多说了。

/**
 * Created by Fant.J.
 */
class TestAQS {

    private int value;

    private MyAQSLock myAQSLock = new MyAQSLock();

    public int next(){
        myAQSLock.lock();
        try {
            Thread.sleep(300);
            return value++;
        } catch (InterruptedException e) {
            throw new RuntimeException();
        }finally {
            myAQSLock.unlock();
        }
    }
    public void a() {
        myAQSLock.lock();
        System.out.println("a");
        b();
        myAQSLock.unlock();
    }

    public void b() {
        myAQSLock.lock();
        System.out.println("b");
        myAQSLock.unlock();
    }
    public static void main(String[] args) {
        TestAQS test = new TestAQS();


        new Thread(new Runnable() {
            @Override
            public void run() {
                test.a();
            }
        }).start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                while (true){
                    System.out.println(Thread.currentThread().getName()+"  "+test.next());
                }
            }
        }).start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                while (true){
                    System.out.println(Thread.currentThread().getName()+"  "+test.next());
                }
            }
        }).start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                while (true){
                    System.out.println(Thread.currentThread().getName()+"  "+test.next());
                }
            }
        }).start();
    }
}

开了四个线程,一个线程去跑a方法,a方法中调用b方法,a、b方法调用之前都有加锁,之后有解锁,这个线程用来做可重入锁的测试,其他三个线程是测试线程安全。

结果图

img_72d3e977002631a21a4fc114db5c010e.png
相关文章
|
1天前
|
缓存 Java 调度
Java中的多线程编程:从基础到实践
【10月更文挑战第24天】 本文旨在为读者提供一个关于Java多线程编程的全面指南。我们将从多线程的基本概念开始,逐步深入到Java中实现多线程的方法,包括继承Thread类、实现Runnable接口以及使用Executor框架。此外,我们还将探讨多线程编程中的常见问题和最佳实践,帮助读者在实际项目中更好地应用多线程技术。
8 3
|
1天前
|
缓存 安全 Java
Java中的多线程编程:从基础到实践
【10月更文挑战第24天】 本文将深入探讨Java中的多线程编程,包括其基本原理、实现方式以及常见问题。我们将从简单的线程创建开始,逐步深入了解线程的生命周期、同步机制、并发工具类等高级主题。通过实际案例和代码示例,帮助读者掌握多线程编程的核心概念和技术,提高程序的性能和可靠性。
7 2
|
2天前
|
Java
Java中的多线程编程:从基础到实践
本文深入探讨Java多线程编程,首先介绍多线程的基本概念和重要性,接着详细讲解如何在Java中创建和管理线程,最后通过实例演示多线程的实际应用。文章旨在帮助读者理解多线程的核心原理,掌握基本的多线程操作,并能够在实际项目中灵活运用多线程技术。
|
2天前
|
Java 程序员 开发者
Java编程中的异常处理艺术
【10月更文挑战第24天】在Java的世界里,代码就像一场精心编排的舞蹈,每一个动作都要精准无误。但就像最完美的舞者也可能踩错一个步伐一样,我们的程序偶尔也会遇到意外——这就是所谓的异常。本文将带你走进Java的异常处理机制,从基本的try-catch语句到高级的异常链追踪,让你学会如何优雅地处理这些不请自来的“客人”。
|
2天前
|
设计模式 SQL 安全
Java编程中的单例模式深入解析
【10月更文挑战第24天】在软件工程中,单例模式是设计模式的一种,它确保一个类只有一个实例,并提供一个全局访问点。本文将探讨如何在Java中使用单例模式,并分析其优缺点以及适用场景。
6 0
时间轮-Java实现篇
在前面的文章《[时间轮-理论篇](https://developer.aliyun.com/article/910513)》讲了时间轮的一些理论知识,然后根据理论知识。我们自己来实现一个简单的时间轮。
|
4天前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
71 38
|
1天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
5天前
|
Java 调度
[Java]线程生命周期与线程通信
本文详细探讨了线程生命周期与线程通信。文章首先分析了线程的五个基本状态及其转换过程,结合JDK1.8版本的特点进行了深入讲解。接着,通过多个实例介绍了线程通信的几种实现方式,包括使用`volatile`关键字、`Object`类的`wait()`和`notify()`方法、`CountDownLatch`、`ReentrantLock`结合`Condition`以及`LockSupport`等工具。全文旨在帮助读者理解线程管理的核心概念和技术细节。
18 1
[Java]线程生命周期与线程通信
|
2天前
|
安全 Java
在 Java 中使用实现 Runnable 接口的方式创建线程
【10月更文挑战第22天】通过以上内容的介绍,相信你已经对在 Java 中如何使用实现 Runnable 接口的方式创建线程有了更深入的了解。在实际应用中,需要根据具体的需求和场景,合理选择线程创建方式,并注意线程安全、同步、通信等相关问题,以确保程序的正确性和稳定性。