Java多线程 -- 公平锁和非公平锁的一些思考

简介: 在java的锁机制中,公平和非公平的参考物是什么,个人而言觉得是相对产生的结果而立,简单的来说,如果一个线程组里,能保证每个线程都能拿到锁,那么这个锁就是公平锁。

在java的锁机制中,公平和非公平的参考物是什么,个人而言觉得是相对产生的结果而立,简单的来说,如果一个线程组里,能保证每个线程都能拿到锁,那么这个锁就是公平锁。相反,如果保证不了每个线程都能拿到锁,也就是存在有线程饿死,那么这个锁就是非公平锁。本文围绕ReenTrantLock来讲。

实现原理

那如何能保证每个线程都能拿到锁呢,队列FIFO是一个完美的解决方案,也就是先进先出,java的ReenTrantLock也就是用队列实现的公平锁和非公平锁。

在公平的锁中,如果有另一个线程持有锁或者有其他线程在等待队列中等待这个所,那么新发出的请求的线程将被放入到队列中。而非公平锁上,只有当锁被某个线程持有时,新发出请求的线程才会被放入队列中(此时和公平锁是一样的)。所以,它们的差别在于非公平锁会有更多的机会去抢占锁。

公平锁:

            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }


    #hasQueuedPredecessors的实现
    public final boolean hasQueuedPredecessors() {
   
        Node t = tail; // Read fields in reverse initialization order
        Node h = head;
        Node s;
        return h != t &&
            ((s = h.next) == null || s.thread != Thread.currentThread());
    }

非公平锁:

            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }

示例

公平锁:
package com.thread.fair;

import java.util.concurrent.locks.ReentrantLock;

/**
 * Created by Fant.J.
 */
public class MyFairLock {
    /**
     *     true 表示 ReentrantLock 的公平锁
     */
    private  ReentrantLock lock = new ReentrantLock(true);

    public   void testFail(){
        try {
            lock.lock();
            System.out.println(Thread.currentThread().getName() +"获得了锁");
        }finally {
            lock.unlock();
        }
    }
    public static void main(String[] args) {
        MyFairLock fairLock = new MyFairLock();
        Runnable runnable = () -> {
            System.out.println(Thread.currentThread().getName()+"启动");
            fairLock.testFail();
        };
        Thread[] threadArray = new Thread[10];
        for (int i=0; i<10; i++) {
            threadArray[i] = new Thread(runnable);
        }
        for (int i=0; i<10; i++) {
            threadArray[i].start();
        }
    }
}



Thread-0启动
Thread-0获得了锁
Thread-1启动
Thread-1获得了锁
Thread-2启动
Thread-2获得了锁
Thread-3启动
Thread-3获得了锁
Thread-4启动
Thread-4获得了锁
Thread-5启动
Thread-5获得了锁
Thread-6启动
Thread-6获得了锁
Thread-8启动
Thread-8获得了锁
Thread-7启动
Thread-7获得了锁
Thread-9启动
Thread-9获得了锁

可以看到,获取锁的线程顺序正是线程启动的顺序。

非公平锁:

/**
 * Created by Fant.J.
 */
public class MyNonfairLock {
    /**
     *     false 表示 ReentrantLock 的非公平锁
     */
    private  ReentrantLock lock = new ReentrantLock(false);

    public  void testFail(){
        try {
            lock.lock();
            System.out.println(Thread.currentThread().getName() +"获得了锁");
        }finally {
            lock.unlock();
        }
    }
    public static void main(String[] args) {
        MyNonfairLock nonfairLock = new MyNonfairLock();
        Runnable runnable = () -> {
            System.out.println(Thread.currentThread().getName()+"启动");
            nonfairLock.testFail();
        };
        Thread[] threadArray = new Thread[10];
        for (int i=0; i<10; i++) {
            threadArray[i] = new Thread(runnable);
        }
        for (int i=0; i<10; i++) {
            threadArray[i].start();
        }
    }
}

Thread-1启动
Thread-0启动
Thread-0获得了锁
Thread-1获得了锁
Thread-8启动
Thread-8获得了锁
Thread-3启动
Thread-3获得了锁
Thread-4启动
Thread-4获得了锁
Thread-5启动
Thread-2启动
Thread-9启动
Thread-5获得了锁
Thread-2获得了锁
Thread-9获得了锁
Thread-6启动
Thread-7启动
Thread-6获得了锁
Thread-7获得了锁

可以看出非公平锁对锁的获取是乱序的,即有一个抢占锁的过程。

最后

那非公平锁和公平锁适合什么场合使用呢,他们的优缺点又是什么呢?

优缺点:

非公平锁性能高于公平锁性能。首先,在恢复一个被挂起的线程与该线程真正运行之间存在着严重的延迟。而且,非公平锁能更充分的利用cpu的时间片,尽量的减少cpu空闲的状态时间。

使用场景

使用场景的话呢,其实还是和他们的属性一一相关,举个栗子:如果业务中线程占用(处理)时间要远长于线程等待,那用非公平锁其实效率并不明显,但是用公平锁会给业务增强很多的可控制性。

相关文章
|
5天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
25 9
|
8天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
5天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
8天前
|
Java
JAVA多线程通信:为何wait()与notify()如此重要?
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是实现线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件满足时被唤醒,从而确保数据一致性和同步。相比其他通信方式,如忙等待,这些方法更高效灵活。 示例代码展示了如何在生产者-消费者模型中使用这些方法实现线程间的协调和同步。
22 3
|
7天前
|
安全 Java
Java多线程集合类
本文介绍了Java中线程安全的问题及解决方案。通过示例代码展示了使用`CopyOnWriteArrayList`、`CopyOnWriteArraySet`和`ConcurrentHashMap`来解决多线程环境下集合操作的线程安全问题。这些类通过不同的机制确保了线程安全,提高了并发性能。
|
8天前
|
Java
java小知识—进程和线程
进程 进程是程序的一次执行过程,是系统运行的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。简单来说,一个进程就是一个执行中的程序,它在计算机中一个指令接着一个指令地执行着,同时,每个进程还占有某些系统资源如CPU时间,内存空间,文件,文件,输入输出设备的使用权等等。换句话说,当程序在执行时,将会被操作系统载入内存中。 线程 线程,与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中产生多个线程。与进程不同的是同类的多个线程共享同一块内存空间和一组系统资源,所以系统在产生一个线程,或是在各个线程之间做切换工作时,负担要比
19 1
|
8天前
|
Java UED
Java中的多线程编程基础与实践
【10月更文挑战第35天】在Java的世界中,多线程是提升应用性能和响应性的利器。本文将深入浅出地介绍如何在Java中创建和管理线程,以及如何利用同步机制确保数据一致性。我们将从简单的“Hello, World!”线程示例出发,逐步探索线程池的高效使用,并讨论常见的多线程问题。无论你是Java新手还是希望深化理解,这篇文章都将为你打开多线程的大门。
|
9天前
|
安全 Java 编译器
Java多线程编程的陷阱与最佳实践####
【10月更文挑战第29天】 本文深入探讨了Java多线程编程中的常见陷阱,如竞态条件、死锁、内存一致性错误等,并通过实例分析揭示了这些陷阱的成因。同时,文章也分享了一系列最佳实践,包括使用volatile关键字、原子类、线程安全集合以及并发框架(如java.util.concurrent包下的工具类),帮助开发者有效避免多线程编程中的问题,提升应用的稳定性和性能。 ####
36 1
|
5月前
|
安全 Java 程序员
Java并发编程中的锁机制与优化策略
【6月更文挑战第17天】在Java并发编程的世界中,锁是维护数据一致性和线程安全的关键。本文将深入探讨Java中的锁机制,包括内置锁、显式锁以及读写锁的原理和使用场景。我们将通过实际案例分析锁的优化策略,如减少锁粒度、使用并发容器以及避免死锁的技巧,旨在帮助开发者提升多线程程序的性能和可靠性。
|
4月前
|
存储 缓存 Java
Java面试题:解释Java中的内存屏障的作用,解释Java中的线程局部变量(ThreadLocal)的作用和使用场景,解释Java中的锁优化,并讨论乐观锁和悲观锁的区别
Java面试题:解释Java中的内存屏障的作用,解释Java中的线程局部变量(ThreadLocal)的作用和使用场景,解释Java中的锁优化,并讨论乐观锁和悲观锁的区别
51 0