Java并发编程-撸一个数据库连接池

简介: 章节目录等待超时模式的使用场景可以掌握的技能等待/通知 消费者/生产者模式CountDownLatch、AtomicInteger、静态内部类、LinkedList、动态代理的使用1.等待超时模式场景当我们调用方法时,这个方法返回的资源比较重要,比如获取数据库连接池中连接句柄。

章节目录

  • 等待超时模式的使用场景
  • 可以掌握的技能
    • 等待/通知 消费者/生产者模式
    • CountDownLatch、AtomicInteger、静态内部类、LinkedList、动态代理的使用

1.等待超时模式

场景

当我们调用方法时,这个方法返回的资源比较重要,比如获取数据库连接池中连接句柄。但是这个资源的返回随着业务量的增加,那么获取资源(连接池连接)的时间就会增加,那么调用一个方法时就要等待一段时间(一般来说是给定一个时间段),如果该方法能够在一段时间内获取到结果,那么将结果立刻返回,反之,超时返回默认结果。

等待/通知的经典范式,即加锁、条件循环、处理逻辑3个步骤,这种范式没办法做到超时等待,对经典范式做很小的改动,就可以实现超时等待。

等待超时模式伪代码:

   public synchronized Object get(long mills) throws InterruptedException {
       Object result = null;
       long future = System.currentTimeMills() + mills;
       long remaining = mills;
       while (result == null && remaining > 0) {
            wait(remaining);//释放锁,阻塞 mills 毫秒
            remaining = future - System.currentTimeMills();
       }

       return result;//如果超时之后获取到result则不返回null
   }

超时等待的作用就是不会永远阻塞调用者,但是 超时之后被唤醒,知识将线程从等待队列移动至阻塞队列,继续向下进行返回result还是要重新获取锁,如果一直获取不到锁,那么result也不会打印。只是增加了灵活性。

2.可以掌握的技能

实战
使用等待超时模式撸一个简单数据库连接池,在示例中模拟:

  • 从连接池获取连接 RunnerThread
  • 使用连接 RunnerThread
  • 释放连接 RunnerThread
    注意:客户端获取(消费)连接的过程被设定为等待超时、等待/通知两种模式
    ConnectionPool.java-数据库连接池
package org.seckill.DBConnection;

import java.sql.Connection;
import java.util.LinkedList;

/**
 * 数据库连接池对象
 */
public class ConnectionPool {

    //链表list(池)维护 connection 连接对象
    private LinkedList<Connection> pool = new LinkedList<Connection>();

    //构造方法 初始化池中连接
    public ConnectionPool(int initialSize) {
        if (initialSize > 0) {
            for (int i = 0; i < initialSize; i++) {
                pool.addLast(ConnectionDriver.createConnection());//创建initialSize个代理Connection对象
            }
        }
    }

    //释放connection ,相当于-生产者
    public void releaseConnection(Connection connection) {
        if (connection != null) {//有效归还连接
            synchronized (pool) {
                pool.addLast(connection);
                //生产者动作完毕后,需要唤醒所有消费者
                pool.notifyAll();
            }
        }
    }

    //获取connection句柄,相当于消费者,采用超时等待与等待/通知两种策略
    public Connection fetchConnection(long mills) throws InterruptedException {
        synchronized (pool) {
            if (mills < 0) {//非超时等待模式,采用等待/通知模式
                while (pool.isEmpty()) {
                    pool.wait();//本示例中不演示这种模式下获取连接的情景
                }

                return pool.removeFirst();
            } else {//超时等待模式
                long future = System.currentTimeMillis() + mills;
                long remaining = mills;
                while (pool.isEmpty() && remaining > 0) {
                    pool.wait(remaining);
                    remaining = future - System.currentTimeMillis();
                }

                Connection connection = null;

                if (!pool.isEmpty()) {
                    connection = pool.removeFirst();//返回头结点对象
                }

                return connection;
            }
        }
    }

}

ConnectionDriver.java-动态生成Connection代理对象

package org.seckill.DBConnection;

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
import java.sql.Connection;

/**
 * 数据库连接驱动,
 * 动态代理获取实现java.sql.Connection 接口的代理对象
 */
public class ConnectionDriver {

    static class ConnectionHandler implements InvocationHandler {
        public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
            if (method.getName() == "commit") {
                Thread.sleep(100);
            }
            return null;
        }

    }

    //获取Connection的动态代理类
    public static final Connection createConnection() {
        return (Connection) Proxy.newProxyInstance(
                ConnectionDriver.class.getClassLoader(),//类加载器
                new Class<?>[]{Connection.class},//Connection实现的接口列表,包含Connection接口
                new ConnectionHandler());//与代理对象绑定的handler
    }
}

ConnectionPoolTest.java--测试类

package org.seckill.DBConnection;

import java.sql.Connection;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.atomic.AtomicInteger;

public class ConnectionPoolTest {
    //线程池中初始化10个连接
    static ConnectionPool connectionPool = new ConnectionPool(10);
    //保证所有的ConnectionRunner 能够同时开始
    static CountDownLatch start = new CountDownLatch(1);
    //main线程将等待所有的Connection Runner结束后才开始执行
    static CountDownLatch end;

    public static void main(String[] args) throws Exception {
        //ConnectionRunner 线程数量,可以修改线程数量进行观察
        int threadCount = 50;
        end = new CountDownLatch(threadCount);
        int count = 20;//每个线程进行20次fetchConnetion动作
        AtomicInteger got = new AtomicInteger();
        AtomicInteger notGot = new AtomicInteger();

        for (int i = 0; i < threadCount; i++) {
            Thread thread = new Thread(new ConnectionRunner(count, got, notGot), "ConnectionRunnerThread");
            thread.start();
        }

        start.countDown();//使所有线程同时运行
        end.await();//主线程等待所有线程运行完
        System.out.println("总的请求次数" + threadCount * count);
        System.out.println("获取到的连接总数" + got);
        System.out.println("未获取到的连接总数" + notGot);


    }

    static class ConnectionRunner implements Runnable {
        int count;//每个线程fetchConnetion的次数
        AtomicInteger got;//记录fetchConnection 成功的次数
        AtomicInteger notGot;//记录fetchConnetion 未成功的次数

        public ConnectionRunner(int count, AtomicInteger got, AtomicInteger notGot) {
            this.count = count;
            this.got = got;
            this.notGot = notGot;
        }

        public void run() {
            try {
                start.await();//等待 所有ConnectionRunner 初始化成功且处于Runnable状态,同时开始运行,由主线程控制的
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            while (count > 0) {
                try {
                    //从连接池中获取连接,如果1000ms内无法获取到,将会返回null。
                    Connection connection = connectionPool.fetchConnection(1000);
                    if (connection != null) {
                        try {
                            connection.createStatement();
                            connection.commit();
                        } finally {
                            //归还连接
                            connectionPool.releaseConnection(connection);
                            got.incrementAndGet();//对获取次数状态进行更改
                        }
                    } else {
                        notGot.incrementAndGet();//对未获取次数状态进行更改
                    }
                } catch (Exception e) {

                } finally {
                    count--;//运行次数递减
                }
            }

            end.countDown();
        }
    }
}

运行结果

1.设置RunnerConnection threadCount数为10

img_610e3d11cb7f5a62475b64a11a3c4cad.png
threadCount = 10

2.设置RunnerConnection threadCount数为20

img_8018c1843e67af0217bfb1c42be5e333.png
threadCount = 20

3.设置RunnerConnection threadCount数为50

img_6c3db5e7732a40ddd18fc8cdd5223a2d.png
threadCount = 50

4.设置RunnerConnection threadCount数为100

img_113499062da504a0a523beb3886a95a9.png
threadCount = 50

可以看到随着 runnerConnection 连接线程数的递增,连接的稳定性是越来越低的。但用户调用不会长时间阻塞到connect fetch 上,而是按时返回。

目录
相关文章
|
1天前
|
存储 Java
JAVA并发编程AQS原理剖析
很多小朋友面试时候,面试官考察并发编程部分,都会被问:说一下AQS原理。面对并发编程基础和面试经验,专栏采用通俗简洁无废话无八股文方式,已陆续梳理分享了《一文看懂全部锁机制》、《JUC包之CAS原理》、《volatile核心原理》、《synchronized全能王的原理》,希望可以帮到大家巩固相关核心技术原理。今天我们聊聊AQS....
|
1天前
|
Java 程序员 数据库连接
Java编程中的异常处理:从基础到进阶
【9月更文挑战第18天】在Java的世界里,异常处理是每个程序员必须面对的挑战。本文将带你从异常的基本概念出发,通过实际的代码示例,深入探讨如何有效地管理和处理异常。我们将一起学习如何使用try-catch块来捕捉异常,理解finally块的重要性,以及如何自定义异常类来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的见解和技巧,让你的Java代码更加健壮和可靠。
|
1天前
|
Java 数据库连接 UED
掌握Java编程中的异常处理
【9月更文挑战第18天】在Java的世界中,异常是那些不请自来的客人,它们可能在任何时候突然造访。本文将带你走进Java的异常处理机制,学习如何优雅地应对这些突如其来的“访客”。从基本的try-catch语句到更复杂的自定义异常,我们将一步步深入,确保你能够在面对异常时,不仅能够从容应对,还能从中学到宝贵的经验。让我们一起探索如何在Java代码中实现健壮的异常处理策略,保证程序的稳定运行。
|
2天前
|
Java 数据库
JAVA并发编程-一文看懂全部锁机制
曾几何时,面试官问:java都有哪些锁?小白,一脸无辜:用过的有synchronized,其他不清楚。面试官:回去等通知! 今天我们庖丁解牛说说,各种锁有什么区别、什么场景可以用,通俗直白的分析,让小白再也不怕面试官八股文拷打。
|
2天前
|
Java
深入理解Java中的多线程编程
本文将探讨Java多线程编程的核心概念和技术,包括线程的创建与管理、同步机制以及并发工具类的应用。我们将通过实例分析,帮助读者更好地理解和应用Java多线程编程,提高程序的性能和响应能力。
15 4
|
2天前
|
安全 Java 开发者
Java并发编程中的锁机制解析
本文深入探讨了Java中用于管理多线程同步的关键工具——锁机制。通过分析synchronized关键字和ReentrantLock类等核心概念,揭示了它们在构建线程安全应用中的重要性。同时,文章还讨论了锁机制的高级特性,如公平性、类锁和对象锁的区别,以及锁的优化技术如锁粗化和锁消除。此外,指出了在高并发环境下锁竞争可能导致的问题,并提出了减少锁持有时间和使用无锁编程等策略来优化性能的建议。最后,强调了理解和正确使用Java锁机制对于开发高效、可靠并发应用程序的重要性。
12 3
|
1天前
|
安全 Java 调度
Java 并发编程中的线程安全和性能优化
本文将深入探讨Java并发编程中的关键概念,包括线程安全、同步机制以及性能优化。我们将从基础入手,逐步解析高级技术,并通过实例展示如何在实际开发中应用这些知识。阅读完本文后,读者将对如何在多线程环境中编写高效且安全的Java代码有一个全面的了解。
|
2天前
|
安全 Java API
JAVA并发编程JUC包之CAS原理
在JDK 1.5之后,Java API引入了`java.util.concurrent`包(简称JUC包),提供了多种并发工具类,如原子类`AtomicXX`、线程池`Executors`、信号量`Semaphore`、阻塞队列等。这些工具类简化了并发编程的复杂度。原子类`Atomic`尤其重要,它提供了线程安全的变量更新方法,支持整型、长整型、布尔型、数组及对象属性的原子修改。结合`volatile`关键字,可以实现多线程环境下共享变量的安全修改。
|
1天前
|
Java
JAVA并发编程ReentrantLock核心原理剖析
本文介绍了Java并发编程中ReentrantLock的重要性和优势,详细解析了其原理及源码实现。ReentrantLock作为一种可重入锁,弥补了synchronized的不足,如支持公平锁与非公平锁、响应中断等。文章通过源码分析,展示了ReentrantLock如何基于AQS实现公平锁和非公平锁,并解释了两者的具体实现过程。
|
1天前
|
Kubernetes Cloud Native Java
探索未来编程新纪元:Quarkus带你秒建高性能Kubernetes原生Java应用,云原生时代的技术狂欢!
Quarkus 是专为 Kubernetes 设计的全栈云原生 Java 框架,凭借其轻量级、快速启动及高效执行特性,在 Java 社区脱颖而出。通过编译时优化与原生镜像支持,Quarkus 提升了应用性能,同时保持了 Java 的熟悉度与灵活性。本文将指导你从创建项目、编写 REST 控制器到构建与部署 Kubernetes 原生镜像的全过程,让你快速上手 Quarkus,体验高效开发与部署的乐趣。
8 0