Java并发编程-队列同步器(AbstractQueuedSynchronizer)

简介: 章节目录Lock接口与Synchronized的区别及特性队列同步器的接口与自定义锁示例队列同步器的实现分析1.Lock接口与Synchronized的区别及特性特性描述尝试非阻塞性的获取锁当前线程尝试获取锁(自旋获取锁)...

章节目录

  • Lock接口与Synchronized的区别及特性
  • 队列同步器的接口与自定义锁示例
  • 队列同步器的实现分析

1.Lock接口与Synchronized的区别及特性

特性 描述
尝试非阻塞性的获取锁 当前线程尝试获取锁(自旋获取锁),如果这一时刻锁没有被其他线程获取到,则成功获取并持有锁
能被中断的获取锁 已获取锁的线程可以响应中断,当获取到锁的线程被中断时,可以抛出中断异常,同时锁会被释放
超时获取锁 在指定的截止时间之前获取锁,如果截止时间到了仍然没有获取到锁,则返回

注意:Lock接口的实现基本上都是通过聚合了一个同步器的子类来完成线程访问控制的

队里同步器的接口与定义锁示例

队列同步器定义:

队列同步器,是用来构建锁与其它同步组件的基础框架,基本数据结构与内容是:
1、int state -> state 标示同步状态;
2、内置的FIFO来完成获取同步状态的线程的排队工作。

队列同步器使用方式

1、子类通过继承同步器并实现它的抽象方法来管理同步状态;
2、实现过程中对同步状态的更改,通过
setState()、
setState(int newState)、
compareAndSetState(int expect,int newUpdateValue)
来进行操作,保证状态改变时原子性的、安全的;
3、实现同步器的子类被推荐为自定义同步组件的静态内部类;
4、同步器可以支持独占式的获取同步状态(ReentrantLock)、也可以支持共享
式的获取同步状态(ReentrantReadWriteLock)

对于同步器的关系可以这样理解:

  • 在锁的实现中聚合同步器,利用同步器实现锁的语义。
  • 锁面向使用者,它定义了使用者与锁的交互接口,隐藏了实现细节。
  • 同步器面向的是锁的实现者,它简化了锁的实现方式,屏蔽了同步器状态管理、线程排队、等待与唤醒等底层操作。

2.队列同步器的接口与自定义锁示例

2.1 模板方法模式

同步器的设置是基于**模版方法模式**,使用者需要继承同步器并重写指定的方
法,随后将同步器组合在自定义同步组件的实现中,并调用同步器提供的模板
方法,而这些模板方法将会调用使用者重写的方法。

2.2 重写同步器指定的方法

getState():获取当前同步状态
setState(int newState):设置当前同步状态
compareAndSetState(int expect,int update): 使用CAS设置当前的状态,该方
法保证状态设置的原子性

2.3 同步器可重写的方法

方法名称 描述
protected boolean tryAcquire(int arg) 独占式获取同步状态,实现该方法需要查询当前状态并判断同步状态是否符合预期,然后再进行CAS设置同步状态
protected boolean tryRelease(int arg) 独占式释放同步状态,等待获取同步状态的线程将有机会获取同步状态(公平性获取锁)
protected int tryAcquireShared(int arg) 共享式获取同步状态,返回>=0的值,标示获取成功,反之获取失败
protected boolean tryReleaseShared(int arg) 共享式释放同步状态
protected boolean isHeldExclusively() 当前同步器是否在独占模式下被线程占用,一般该方法表示是否被当前线程所独占

2.4 独占锁示例

package org.seckill.lock;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;

/**
 * 利用了模板方法模式
 */
public class Mutex implements Lock {

    private static class Sync extends AbstractQueuedSynchronizer {
        //是否处于占用状态
        @Override
        protected boolean isHeldExclusively() {
            return getState() == 1;
        }

        //当状态为0时获取锁
        @Override
        protected boolean tryAcquire(int arg) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        //释放锁,将当前状态设置为0
        @Override
        protected boolean tryRelease(int arg) {
            if (getState() == 0) {
                throw new IllegalMonitorStateException();
            }
            setExclusiveOwnerThread(null);
            setState(0);
            return true;

        }

        //返回一个condition,每个condition中都包含了一个condition队列
        Condition newCondition() {
            return new ConditionObject();
        }
    }

    //仅需要将操作代理到Sync上即可
    private Sync sync = new Sync();

    public void lock() {
        sync.acquire(1);//调用tryAccquire
    }

    //当前已获取锁的线程响应中断,释放锁,抛出异常,并返回
    public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);
    }

    public boolean tryLock() {
        return sync.tryAcquire(1);//尝试立即获取锁
    }

    public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(timeout));//尝试超时获取锁
    }

    public void unlock() {
        sync.release(1);//释放锁
    }

    public Condition newCondition() {
        return sync.newCondition();
    }
}

总结-实现同步组件的方法

1. 独占锁Mutex 是一个自定义同步组件,它允许同一时刻只允许同一个线程占有锁。
2.Mutex中定义了一个私有静态内部类,该类继承了同步器并实现了独占式获取和释放同步状态。
3.在tryAcquire(int acquires)方法中,经过CAS设置成功(同步状态设置为1),则
代表获取了同步状态,而在tryRelease(int releases) 方法中只是将同步状态重
置为0。

3 队列同步器的实现分析

3.1 同步队列数据结构

  • 同步器依赖内部的同步队列,即一个FIFO的队列,这个队列由双向链表实现。节点数据从 队列尾部插入,头部删除
  • node 数据结构
   struct node {
        node prev; //节点前驱节点
        node next; //节点后继节点
        Thread thread; //获取同步状态的线程
        int waitStatus;  //等待状态
        Node nextWaiter; //等待队列中的后继节点
   }

等待队列 后续篇章介绍到condition会有相关记录。

img_893ee1773804ef82128d84607a1a3ee4.png
同步队列基本结构

3.2 无法获取到同步状态的线程节点被加入到同步队列的尾部

本质上是采用 compareAndSetTail(Node expect,Node update),当一个线程成功的获取了同步状态
(或者锁),其他线程将无法获取到同步状态,转而被构造成为节点并加入到同步队列中,而这个加入队列的过程
必须要保证线程安全。所以采用了基于CAS的方式来设置尾节点的方法。
,需要传递当前节点认为的尾节点和当前节点,只有设置成功后,当前节点才正式与之前的尾节点建立关联。

3.3 成功获取同步状态

同步队列遵循FIFO,首节点是获取同步状态成功的节点,首节点的线程在释放
同步状态时,会唤醒后继节点,而后继节点将会在获取同步状态成功时,将自己设置为首节点。

3.4 独占式同步状态获取与释放

  • 前驱节点为头节点且能够获取同步状态的判断条件和线程进入同步队列 来获
    取同步状态是自旋的过程。
  • 设置首节点是通过获取同步状态成功的线程来完成的acquireQueued(node,args)完成的

独占式获取同步状态的流程图

img_f3f8e640aedfb403dd164dfac2a074e9.png
独占式同步状态(锁)获取流程

目录
相关文章
|
1天前
|
Java 数据库
JAVA并发编程-一文看懂全部锁机制
曾几何时,面试官问:java都有哪些锁?小白,一脸无辜:用过的有synchronized,其他不清楚。面试官:回去等通知! 今天我们庖丁解牛说说,各种锁有什么区别、什么场景可以用,通俗直白的分析,让小白再也不怕面试官八股文拷打。
|
7天前
|
缓存 Java 编译器
JAVA并发编程volatile核心原理
volatile是轻量级的并发解决方案,volatile修饰的变量,在多线程并发读写场景下,可以保证变量的可见性和有序性,具体是如何实现可见性和有序性。以及volatile缺点是什么?
|
1天前
|
Java
深入理解Java中的多线程编程
本文将探讨Java多线程编程的核心概念和技术,包括线程的创建与管理、同步机制以及并发工具类的应用。我们将通过实例分析,帮助读者更好地理解和应用Java多线程编程,提高程序的性能和响应能力。
13 4
|
9天前
|
Java 调度 开发者
Java并发编程:深入理解线程池
在Java的世界中,线程池是提升应用性能、实现高效并发处理的关键工具。本文将深入浅出地介绍线程池的核心概念、工作原理以及如何在实际应用中有效利用线程池来优化资源管理和任务调度。通过本文的学习,读者能够掌握线程池的基本使用技巧,并理解其背后的设计哲学。
|
1天前
|
安全 Java 开发者
Java并发编程中的锁机制解析
本文深入探讨了Java中用于管理多线程同步的关键工具——锁机制。通过分析synchronized关键字和ReentrantLock类等核心概念,揭示了它们在构建线程安全应用中的重要性。同时,文章还讨论了锁机制的高级特性,如公平性、类锁和对象锁的区别,以及锁的优化技术如锁粗化和锁消除。此外,指出了在高并发环境下锁竞争可能导致的问题,并提出了减少锁持有时间和使用无锁编程等策略来优化性能的建议。最后,强调了理解和正确使用Java锁机制对于开发高效、可靠并发应用程序的重要性。
9 3
|
1天前
|
安全 Java API
JAVA并发编程JUC包之CAS原理
在JDK 1.5之后,Java API引入了`java.util.concurrent`包(简称JUC包),提供了多种并发工具类,如原子类`AtomicXX`、线程池`Executors`、信号量`Semaphore`、阻塞队列等。这些工具类简化了并发编程的复杂度。原子类`Atomic`尤其重要,它提供了线程安全的变量更新方法,支持整型、长整型、布尔型、数组及对象属性的原子修改。结合`volatile`关键字,可以实现多线程环境下共享变量的安全修改。
|
9天前
|
缓存 监控 Java
Java中的并发编程:理解并应用线程池
在Java的并发编程中,线程池是提高应用程序性能的关键工具。本文将深入探讨如何有效利用线程池来管理资源、提升效率和简化代码结构。我们将从基础概念出发,逐步介绍线程池的配置、使用场景以及最佳实践,帮助开发者更好地掌握并发编程的核心技巧。
|
8天前
|
存储 安全 Java
Java并发编程之深入理解Synchronized关键字
在Java的并发编程领域,synchronized关键字扮演着守护者的角色。它确保了多个线程访问共享资源时的同步性和安全性。本文将通过浅显易懂的语言和实例,带你一步步了解synchronized的神秘面纱,从基本使用到底层原理,再到它的优化技巧,让你在编写高效安全的多线程代码时更加得心应手。
|
6天前
|
存储 Java
Java编程中的对象序列化与反序列化
【9月更文挑战第12天】在Java的世界里,对象序列化与反序列化是数据持久化和网络传输的关键技术。本文将带你了解如何通过实现Serializable接口来标记一个类的对象可以被序列化,并探索ObjectOutputStream和ObjectInputStream类的使用,以实现对象的写入和读取。我们还将讨论序列化过程中可能遇到的问题及其解决方案,确保你能够高效、安全地处理对象序列化。
|
2天前
|
Java 开发者
Java编程之旅:探索面向对象的力量
【9月更文挑战第16天】在编程的世界中,Java以其强大的面向对象编程特性而闻名。本文将带你走进Java的世界,一起探索类与对象的奥秘,学习如何通过封装、继承和多态性构建健壮的软件系统。无论你是初学者还是有经验的开发者,本文都旨在提供实用的代码示例,帮助你提升Java技能。准备好开始这段旅程了吗?让我们启程吧!